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The Complete Transduction Equation of Vision1

by 
James T. Fulton

Appendix  A of “Processes in Biological Vision”
A.1 Introduction

This appendix will present the mathematical description (the Photoexcitation/de-excitation Equation or P/D
Equation), of the output of the photoexcitation/de-excitation process.  The process occurs within the physical
confines of the outer segment of the photoreceptor and in consort with the dendrites of the neural portion of the
photoreceptor.  It is based on the physical configuration of the photoreceptor cell developed in Chapter 4 and the
operation of that cell developed in Chapter 12.  The approach taken is completely quantum mechanical and does
not rely upon a putative membrane surrounding the disks of the outer segment.  Nor does it rely upon a putative
isomerization of the chromophoric material during photoexcitation or de-excitation.  The basic mechanisms
involved are the same as those used in color photography.  However, the overall process is not continuous in
photography.  Most of the references relevant to the P/D process are given in Chapter 5.

The P/D Equation defines the number of free electrons introduced into the neural system as a result of a given
number of photons being absorbed by the light sensitive (chromophoric) material of the outer segment.  This
relationship will be defined as transduction.  The electrons are initially generated in the base region of a three-
terminal liquid crystalline electrolytic semiconductor ( a “transistor”) known as an Activa.  The process actually
generates an electron-hole pair but the hole plays no active role in the transduction process.  Following the
generation of the free electrons, their magnitude is multiplied in the electrolytic circuit of the Activa as part of the
function of the adaptation amplifier.  Following this amplification, the current is passed to the distribution
amplifier which raises the “power level” of the signal before converting it to a voltage at the pedicle of the
photoreceptor cell.  This conversion involves a diode.  The result is that the output voltage of the photoreceptor cell
is logarithmically related to the input, the absorbed photon flux.  The role of the adaptation amplifier, distribution
amplifier and the diode of the pedicle are grouped into the process known as translation in this work.  The form of
the output signal from the photoreceptor cell as a function of time  is usually called the generator waveform.

Subsequent to the development of the P/D equation of biological vision, it was found that the same functional
equation applied to the other major sensory modalities, e.g., hearing and smell.  Section A.4.2 will address
application of the P/D equation to the olfactory system of the Salamander.  The noteworthy conclusion drawn from
the general applicability of the one equation is that the major sensory mechanisms of the neural system are all
quantum-mechanical in character.  They involve the changing of energy states within liquid-crystalline molecular
structures.  They do not involve chemical reactions in the conventional sense.

The complete equation to be presented here is a significant function of temperature.  As a result, it is important for
researchers in both the laboratory and clinic to record the temperature of the subject or sample to an accuracy of
one degree celsius.  Merely citing room conditions as the temperature is not adequate.

The complete P//D equation contains two distinct time constants.  Only under one specific degenerate condition do
these two become a single time constant.  In this specific case, the P/D equation degenerates to the Poisson
distribution that Hodgkin used in his attempts to fit the transduction mechanism.  His attempts to fit the degenerate
equation to the general case were not successful.
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The goals of this appendix are two.  First, to define the P/D Equation both as a response to an impulse stimulus and
as a response to a square wave stimulus.  Because of the unwieldy character of the mathematical expressions
describing the responses to a square wave, these expressions will not be provided at the detail level.  However,
analyses describing and depending on these expressions will be considered in the later sections of this paper.  
Second, to develop the equations for the generator waveform under several different operating conditions See
Section A.2.6).  It is the generator waveform that becomes an integral part of the a-wave of the conventional ERG. 
The ERG waveforms are discussed in Section 16.7.2.

The de-excitation mechanism is slightly different in the L–channel of vision from that in the UV–, S– and
M–channels.  This results in a slightly different P/D Equation for this channel.  That variant will be discussed in
Section A.2.5.  However, the overall transduction mechanism of stage 1 of the L-channel remains essentially the
same as for the other channels because of the logarithmic character of the overall function.

The impulse response of a circuit (whether neural or otherwise) is a unique signature of the underlying
mechanisms and circuit elements.  This fact has led to a large engineering specialty associated with “circuit
realization,” the determination (specification) of the underlying circuit causing a specific impulse response.  These
rules of realization define the specific circuit configuration associated with the impulse response for the same
circuit.  Circuit realization rules provide clear guidance that the underlying circuit configuration of the
excitation/de-excitation mechanism does not employ a series of RC filter sections (as frequently suggested in the
conceptual literature).

The complete P/D equation shows clearly that the transduction mechanism is mathematically a first order process
incorporating a finite time delay.  As a result, the completer P/D response waveform consists of a finite delay
before the start of a first order (exponential) response.  The first order response necessarily departs from the
baseline with a finite slope, e.g., there is a distinct acute angle between the baseline and the initial portion of the
response.  Any smoothing of this transition (to a second order process) is due to the test protocol or test circuits.

The time delay to the start of the first order response is a much more precise parameter of the P/D equation than
the time to response peak.  In addition, the time to the start of the first order response is given by a single
exponential equation in closed form.

The photoexcitation/de-excitation mechanism is reflected in two distinct forms, the response of the mechanism to a
stimulus of nominally zero duration and infinite intensity (the product resulting in a unit energy stimulus defined
as an “impulse”), and the response to an extended stimulus.   While this extended stimulus may be of any length
and need not be of constant amplitude, it is usually of finite duration and a fixed amplitude in the laboratory
environment.  This extended stimulus can be described as a pulse, a rectangular pulse, a step input, or (as in the
text by Trimmer, 1950) the “response to a constant” value other than that at time zero.  The subtlety in the last case
is that the value of the stimulus before time zero is actually irrelevant to the subsequent response as long as the
response value at time zero is known.

A feature of the rectangular pulse response is the decay following the cessation of stimulation.  This decay is
indicative of two internal elements.  There is a delay which is a function of the internal structure and a decay time
constant which is characteristic of the actual decay time constant of the overall mechanism in the absence of any
stimulation.  This post termination delay time constant is the only decreasing function associated with the response
that is indicative of the true decay time constant of the mechanism.

The response of the P/D mechanism (or any mechanism or circuit) to an impulse is known to describe the internal
characteristics of the mechanism uniquely.  In theory, the impulse response can be de-convolved to define the
internal elements of any mechanism or circuit precisely.  In the case of the neural system, it can be used to evaluate
various proposed models of the transduction mechanism.  Proposed models of the transduction neurons that cannot
produce the observed impulse response observed in the laboratory must be seriously questioned or dismissed.   

One can establish the overall equation for the transduction problem in vision by defining the problem, configuring
the appropriate differential equation, determining the appropriate boundary conditions and forcing function, and
then solving that equation.  After obtaining the proposed solution, it must then be shown that the equation
accurately reflects the experimental data.  This will be the procedure used here.  Because of the complexity of the
overall problem, some reiteration may be noticed in the order of presentation.

There is excellent data available in the literature concerning the current generated by the P/D Process.  The earliest
data involved the suction pipette technique of Baylor, Hodgkin & Lamb.  They have also presented similar data for
the waveform generator.  The proposed test of the results of this analysis is its fidelity in matching the results of
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Figure A.1.1-1 The mechanism of photoexcitation/de-
excitation.

these, and later, investigators.

This analysis has uncovered the considerable sensitivity to temperature of the photoexcitation/de-excitation
process.  This characteristic appears to be common to the neurological systems of biology (although possibly with a
different coefficient in some ecologically adapted species).  The effect is so large as to define a considerable
advantage to endothermic and pseudo-endothermic animals.

Fritsches, et. al. have shown the effect of temperature on the visual response of large predatory oceanic fish2.  They
have presented significant data concerning the fact that these fish are quasi- or pseudo-endothermic.  These fish,
including the swordfish, several shark species and some tuna are able to maintain elevated body temperature over
at least time intervals when they are most active.  This elevated temperature is achieved through both heat
exchangers  recovering heat generated in the muscles for use in heating the retina and brain and/or strategically
placed muscle tissue generating heat near the retina/brain.   Although their nomenclature is unconventional
(associating the critical fusion frequency, a psychophysical parameter, with the responsivity of the P/D Equation,
their data is excellent.  They indicate a factor of 5:1 or more increase in responsiveness of the photoreceptors for
each 10°C temperature change.  Their data can be compared to the risetime and delay values predicted by the
equation developed here.

The analysis of this Appendix shows that the kinetics of P/D are not simple first-order kinetics.  They involve a
complex function containing two first order components and a uniquely varying coefficient.

A.1.1 Conceptualization of the overall model

The basic equation implemented in the photoexcitation/De-excitation process is illustrated in. Figure A.1.1-1  An
incident photon is absorbed and an electron is transferred from the ground, or unexcited, state to the excited state. 
The excited electron will transfer back to the ground state at its first opportunity.  In vision, this occurs at the
boundary between the photoreceptor disks and the dendrites of the photoreceptor cell.  The transfer back to the
ground state releases the excess energy of the electron in the form of an exciton (an energy packet) that is in turn
absorbed by the Activa of the dendrite.
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In the proposed model of vision, the required differential equations are of a form similar to that found frequently in
engineering.  It is rare to find differential equations discussed in the biological community.  Wilson has provided
an excellent discussion of differential equations aimed at the biology community3.  However, it is introductory in
character and pedagogical in style.  It contains few references to the actual physiology of the neural system.  

While Wilson claims an expertise in non-linear dynamic phenomena, that expertise does not appear to
extend to switching type non-linear phenomena found in most oscillatory systems.  He focuses on solving
the Huxley-Hodgkin equations in their continuous form while relying on their (never confirmed)
independence principle, instead of solving the much simpler equations associated with a switching
oscillator interpretation of the ganglion neuron.

The presentation is aimed at teaching the reader to make maximum use of canned solutions to differential
equation problems rather than how to express a phenomenological problem in differential equation format. 
He provides a series of MatLab™ scripts that rely upon unstated assumptions that can deter researchers
from illuminating the more subtle features of their data.

Wilson’s chapters 1 & 2 are quite elementary and only treats serial differential problems of the type found
in simple chemical kinetics.  He limits his discussion of a “cascade of equations” to the case of only one
time constant among them.  Thus, his solution is unable to explore a more complex situation.  The equation
he graphs in figure 2.2 is a simplification of the actual P/D equation of transduction developed in this work. 
His simplification leads to equation 2.8 that is a special case of the P/D equation labeled the Hodgkin
solution (Section A.2.3.4).  His equation 2.9 is due to a lack of a clear physiological model and is
superfluous.  

He selects a specific example of visual photoreceptor response in his Section 3.3 that is not the nominal
situation.  The result is a second order differential equation that requires the presence of both positive and
negative reactance in the underlying physiology.  No physiological model is offered to support this
requirement.  While pedagogically useful, it is misleading as to the mechanism generating the overshoot in
the response he uses.  It also overlooks the pure delay occurring between the response and the beginning of
stimulation in his Figure 3.1.

Wilson makes the point that delay is very difficult to include in his mathematical formulations.  He states, It
leads to “infinite-dimensional dynamic systems” in his formulations.  This is due largely to his use of the
state-space approach to differential equations and his desire to solve all differential equation problems using
simple matrix algebra techniques that are compatible with MatLab™.  He presents a number of scripts
(incorporating unspecified internal assumptions) to aid in solving various problems.

A shortcoming of his book is the lack of effective association between the basic physiological process and his
mathematical solutions.  He provides a differential equation solution to the Huxley-Hodgkin equations but does not
relate it to the giant axon of the squid.

Stockman. Langendorfer et al. presented a simple conceptual model of the transduction mechanism of stage 1 in
20064.  It proposed a series of RC stages within the sensory neuron where the time constants of the stages were
independent.  As they note, “Again, we emphasize that n (the number of stages) is poorly constrained.”  Their
conceptual model did not consider the independence of the attack and decay time constants of the transduction
mechanism nor did they discuss the fact the decay time constant is independent of the stimulus level and fixed. 
They did not cite the available impulse response data of the photoreceptor cells.  The impulse response, when
associated with the correct operational environment, uniquely and explicitly defines the underlying circuit diagram
of mechanism generating the response.

The basic transduction problem can be illustrated by means of Figure A.1.1-2 and solved using differential
equations.   In frame (a), it is assumed that there is a large pool of unexcited n-electrons associated with the
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chromophoric liquid crystal, Rhodonine.  When irradiated by light, the light is absorbed and individual ground
state electrons, or n-electrons, are excited into the π* state.  The π* is particularly stable in oxygen-based
chromophores.  Thermal de-excitation is not allowed by the rules of quantum-mechanics.  The excited electron
remains in that state until it is de-excited by some other quantum-mechanical event.  This condition is responsible
for the phenomenon of “bleaching” in the visual chromophores of the retina as discussed in Section A.2.4.3.  In
this case, the de-excitation is accompanied by the excitation of a ground state electron in the base region of the
associated Activa, whereupon the π*-electron returns to the pool of de-excited n-electrons and is available to
participate in the cycle again.  The excitation of an electron in the base region of the Activa is the source of
electrical current through the Activa.  The minimum energy, Ed must exceed the bandgap En for energy transfer to
occur.  There is a major exception to this requirement that is associated with the L–channel chromophore of vision
and is discussed in Section A.2.5.
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Frame (b) provides a simple equivalent circuit for discussing the transduction process.  It is developed in greater
detail in Chapter 12.  The major parameters within the liquid-crystalline chromophore are;
C the current generator with its intrinsic photon capture cross-section and efficiency, the effective capacitance, Clq,
of the liquid crystal,
C the shunt resistance, rthermal which is large,

Figure A.1.1-2 Concept of transduction in vision. (a); The quantum mechanical model of transduction.  Excitation
of electrons into the σ-excited state is particularly stable in oxygen based chromophores, thermal de-excitation does
not occur.  De-excitation at the chromophore/Activa interface is tightly coupled as shown.  With one exception, the
minimum energy, Ed must exceed the bandgap En for energy transfer to occur.  The horizontal scales, x and x’ are
significantly different.  (b); an equivalent electrical circuit to illustrate the major elements from an electrical
perspective.  The dashed connection between the two ground planes emphasizes the actual signal transfer is via the
energy domain and is not a current flow.  See text.
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C the effective transduction resistance, rtrans, which is a function of the coupling to the Activa and can be considered
a trans-impedance, and
C the time delay, Tt, involved in the travel of excited electrons to their point of de-excitation.

The major parameters within the Activa circuit are:
C the Activa acting as a current source coupled closely to the trans-impedance, rtrans,
C the capacitance, Cn, of the output circuit shown here in shunt with the source and
C the load impedance, rn, of the output circuit shown here in shunt with the source.

The close coupling between the two circuits is shown by the equivalent currents flowing in opposite directions
within the oval circle.

A.1.1.1 Determining the boundary conditions and forcing function

This basic cycle described above is very closely related to three other engineering problems; the hydraulic problem
of pumping a fluid between two reservoirs (in a closed loop), the problem of producing radio-isotopes in a nuclear
pile and the problem of the precipitation cycle in the atmosphere.  These problems can be described using
probability theory as follows;

+  In the first case, the problem does not normally involve a quantized medium but it can be
thought of as a probabilistic problem of the class known as withdrawal with replacement. 

+  In the second case, the situation is slightly different.  The radiation applied to the material is
quantized but the atoms that become radio-active do not normally decay back into their original
form.  Therefore, the radio-isotope process is modeled as withdrawal without replacement.  

+ In the third case,  the problem can be looked at as one of withdrawal with replacement after a
significant time delay.  It is relatively easy to describe the evaporation phase and the precipitation
phase parts of the problem but it is relatively difficult to describe the time interval between these
two events.

In the last case, the water molecules have gone into the vapor phase but are still electrically neutral.  If the particles
were electrically charged, there motions would be further complicated by their mutual repulsion; this would affect
both their speed of motion and their direction of motion.

Whether withdrawal with replacement or without replacement is appropriate to the vision process is determined by
how the de-excitation process operates.  If the electrons decay back to their original state by an exponential process,
the hydraulic model is appropriate (but treating the medium in a quantized manner), i. e. withdrawal with
replacement.  If a significant time delay is involved in the overall photoexcitation/de-excitation process, the
precipitation model becomes the more appropriate model, i. e. withdrawal with replacement after a significant
delay.

Having solved the equations and compared them to the experimental data, it will be shown that the precipitation
model, modified to employ charged particles,  provides the most general solution.  This model is linear and
simplifies into a number of special cases.  However, the fact that the particles are charged has a major role to play
in the overall process.  And, as in most semiconductor problems, the temperature of the material plays a major role
in the transport equation describing the electrons activity while they are excited.

Reversing the above discussion, it can be said that;

+  the complete P/D equation developed below follows the precipitation model but involves 
charged particles in the vapor phase.

+  eliminating the charge on the particles reduces the model to that of the conventional
precipitation model.

+  eliminating the time delay results in the model reducing to the hydraulic model.
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+  insuring that only a minor fraction of the available electrons are excited results in the model
closely approximating the nuclear isotope production problem.

Going one step further, under certain conditions,  the last model will reduce to the situation given by an equation
frequently found in the statistical literature and applied to the photoexcitation/de-excitation problem by Hodgkin in
19645; In its simplest form, 

response = ACpCe –p where p = t/J and A is a constant of proportionality

This is the Poisson Distribution for the first observation, i. e.,  ν equal 16.  This level of simplification is not useful
however, except for purposes of separating variables during calibration.  The complete Poisson Distribution is
described by a more complex expression.  It is a special case of the Binomial Distribution.  It includes a factorial in
its denominator.  

Borsellino, et. al. provide additional background on the mathematical approach of Hodgkin7.

A.1.1.1.1 Previous solutions by other investigators

The Baylor, Hodgkin & Lamb team explored two distinct paths based on the Poisson Distribution approach.  
Hodgkin attempted to use the general Poisson Distribution to describe the range of responses as a function of input
flux by normalizing the individual responses for each value of ν.  This approach did not give good results.  The
proposed equations did not track the measured responses (except for one match they did not find).  The
Distribution with n = 1 will appear later in this appendix as a special case of the general solution.

Later, Lamb8 approached the photoexcitation/de-excitation problem from a different statistical direction and
derived an “independent activation equation.”  This equation eliminated the factorial in the denominator. 
However, by varying the exponent representing the number of observations, it could be made to fit nearly any
individual asymmetrical distribution, such as the Poisson or the Log-normal.  However, as noted in figure 4 of the
article, the equation did not track a series of responses as a function of incident flux unless the variable ν was
adjusted arbitrarily for each response.  This formulation was not the general expression for the photoexcitation/de-
excitation mechanism.

Subsequently that team and another of Penn & Hagen explored introducing a multi-stage RC type filter into the
signal stream in order to match the rising edge of the measured response.  These approaches did not provide a good
solution to the problem.

A.1.1.2 Details related to the photoexcitation process

In the authors opinion, the photoexcitation process in vision is very closely related to the equivalent process in dyed
silver halide photography.  All of the available spectral data for the photoreceptors is consistent with that for other
photon absorption processes.  Specifically, no data could be found in the literature that would indicate the
absorption process was a function of the biologically restricted temperature range, zero to 40 degrees centigrade. 
In fact the spectral absorption characteristics found in vision all exhibit the normal quantum-mechanical band
edges  which are a function of the absolute temperature of the material examined.  Processes in the signal path
subsequent to the photoexcitation process, including the de-excitation process, are temperature sensitive over the
restricted biological range.



Appendix A-  9

9Dewar, M. & Longuet-Higgins (1952) The correspondence between the resonance and molecular orbital theories. 
Proc. Roy. Soc. London, A214: 482-493

A.1.1.3 Details related to the transport process

In defining the complete form of the transport process, using the precipitation model, with or without charged
particles, it is important to note that; as in the photoexcitation process, the basic process is a probabilistic one.  The
time required for a particular exciton to travel from a given site of origin in the B* band to a given site of de-
excitation at the edge of a disk cannot be given explicitly.  Thus, although a quantum level process is involved, the
appropriate equations are continuous and based on probability theory.

For the case of charged particles in the B* band of a given liquid crystal--the real case-- it is appropriate to
illuminate two possible conditions.  The first case is where only a single excited electron is present in a single
liquid crystalline structure at any one time.  Because of the multiple disk structure in the deutrostomic eye and the
multiple segments of an orange structure in the protostomic eye, this is frequently the case, particularly at low light
levels.  The second case is where more than one excited electron is present in a given structure.  

As a starting point,  it may be assumed that there is no field potential applied across a disk.  In this case,  the single
excited electron will be created at a random point within the surface of the disk and will reach the edge of the
structure where the dendrites are following a random walk scenario at a velocity determined by thermal and
quantum considerations.  

If there are more than one excited electron present in a single structure at a given time, each electron will induce
an electric field at the location of the other particle(s) and it will be necessary to consider their mutual repulsion
which will increase the component of their velocity away from each other and necessarily toward the physical
edges of the liquid crystal.

In either of the above cases, the velocity of the excited electron may be significantly reduced compared to the
normal situation due to the liquid crystalline material.  Dewar9 has shown that the absorption spectrum of this type
of material is related to the fact that electrons that are involved in the quantum-mechanical oscillations related to
this absorption move at a velocity of only 1/500 of the speed of light.  If this same speed reduction applies to
excited electrons in the B* band of the material, the time to reach the edge of the disk could be significant and
introduce an overall transport delay into the overall P/D equation, which is the situation observed.

A review of the literature uncovered the fact that the delay measured at the output of the photoreceptor cell and
associated with the P/D process is temperature dependent in an unusual manner, i. e. the delay appears to be a
function of the temperature above the freezing point of water instead of relative to absolute zero.

A.1.1.4 Details related to the de-excitation process

As noted in the figure, the de-excitation process is a quantum-mechanical process that is controlled by the Activa. 
De-excitation of the chromophore is directly related to the creation of free electrons in the base region of the
Activa.  The creation of these free electrons is limited by the space charge built up in the base.  This space charge
is typically swept out of the base region by the potentials applied between the emitter and collector terminals of the
Activa.  The resulting electron current is a function of the external circuit elements supporting the Activa.  In most
sensory neurons, this current is limited by the impedance associated with the electrostenolytic power supply
supporting the collector potential.  The maximum average current supplied by this source controls the rate of de-
excitation and therefore the state of bleaching of the retina following a strong stimulation.  Since the
electrostenolytic power supply is photoreceptor specific, the overall instantaneous sensitivity of the retina can vary
based on spectral wavelength and physical location within the retina.  These variations play a large role in the
afterimages experienced in human vision.

A.1.2  Relevant literature

The appropriate experimental data can be divided into two groups.  The first with non-human subjects and the
second with humans.  Work with monkeys will be included with the human activity although there may be
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differences relative to the complete ERG.  Fuortes et. al.10 with Limulus, Baylor et. al.11 with turtle, Copenhagen,
et. al. with turtle12 and Saszik & Bilotta with zebrafish13 are the major papers in the first group prior to the papers
of Juusola, et. al.  Juusola, et. al. have provided an extensive set of papers based on in-vivo experiments with the
blowfly14.  These papers provide the most comprehensive data set of any.  Charleton  et. al.15, a second Baylor
team16, Lamb17, Cideciyan et. al.18 and Pepperberg et. al.19 are those in the second category.  It is possible to
postulate that the P/D mechanism(s) are temperature and irradiance dependent.  It is also possible to postulate that
the total response consists of a pure delay term plus an amplitude response term.  

Note:  Whereas only one reference is given below for each of the authors cited above,  the intent
is to cite all of the work associated with that author and his associates on this subject.  In most
cases, the paper cited will provide additional citations to a group of papers forming a cluster. 
There may, however, be more recent papers by these groups.

A problem that has arisen in the analysis of the above data has to do with the different techniques used by the
investigators and the different locations in the retinas where the data was extracted.  Thus, where some of the data
is taken at the point as close as we will probably ever get to the source of the P/D process, recording of the currents
and voltages related to a single photoreceptor cell under specular irradiance at a controlled temperature, other data
has been taken by probing at the location of the s-potentials and still other data is taken even more remotely via
electroretinograms.  Similarly, some of the data is reported subject to an input expressed in radiant units, some in
luminance units, and some in “scotopic trolands”.  Furthermore, some authors, Saszik & Bilotta as an example
have provided excellent data from an “ERG” that is described in their methods section as an LERG as defined
here.  Their waveform (fig 1) shows little compression with amplitude and appears to be a good example of a Class
D waveform (generator potential) under small signal conditions.  Because of these variants, some of the data
available can only be interpreted as an envelope of the underlying process(es) and care must be observed in
adopting such data in support of a model.  Some of the data is from actual, non-invasive, ERG’s.  This material
will be considered more fully in Section 16.7.

Note: The accuracy of the values given for the P/D equation presented below could be improved
through review of the original data of the above and other authors.  Scaling values from even the
best published work is frought with possible errors.  Sometimes, the same data presented in
different documents are different due to the activity of the graphic artist involved.  Sometimes,
the curves are truncated because the focus of the discussion is with a different area of the data.

The best data sources involve the use of narrow spectral band light and close control of the subjects temperature
(+/-0.25 Celsius measured at the specimen should be a goal in research).

The two postulates,  indicated above, constitute a clear requirement that the P/D equation involves a differential
equation with a complex argument; the solution of that differential equation exhibiting a real part having an
amplitude response as a function of time which is both temperature and irradiance dependent and an imaginary



Appendix A-  11

part describing a time delay as a function of both temperature and irradiance.

The requirement for a complex argument suggests a slightly more complex analog which is shown in Figure
A.1.1-3.  This model is equivalent to the precipitation cycle defined in meteorology.  In this analogy, solar heat
causes liquid water to rise from a small lake as water vapor and be transported rather slowly as water vapor  to
adjacent mountains where it precipitates and flows relatively quickly in liquid form back into the lake.

A.1.3 The Complete model (caricature)

Figure A.1.1-3 provides an expanded model of the photoexcitation/de-excitation model.  The photoexcitation
portion of the model remains relatively simple as does the de-excitation process.  However, the transport (delay
related) portion of the model has become more complex; exhibiting a dependency on both temperature and the
exciton density existing internal to the model.  It may not be possible to provide a complete theoretical explanation
for these dependencies at this time.  However, they can be included in the expanded model; and they can be
included in the overall mathematical model.  See Section A.2.2.2.

A.1.3.1 Quiescent operation

Under quiescent conditions, in the absence of illumination, all of the electrons associated with the liquid crystalline
chromophore on the disks are located in the quantum mechanical ground state labeled n in the left half of the
drawing.  There are no excited electrons, “excitons,” in the π*  band.  No signal is generated within the OS or the
dendritic structure of the IS. The transducer material is in quantum mechanical contact with the dendrites of the
IS.  Note the interface between the bands of the liquid crystal on the left and the liquid crystalline semiconductor
device on the right need not overlap.  The energy is transferred by a quantum mechanical process, not a conductive
one.  Note also the horizontal scale change between the two sides of the diagram.

A.1.3.2 Operation with illumination

Upon illumination by radiation of proper wavelength, each incoming photon with an energy greater than that
indicated by α and less than that indicated by β will cause an electron to be excited from the ground state, n, into
the Π* band of the liquid crystalline transducer.  These excitons appear at a location directly above where the
photon was absorbed.  This can be anywhere in the 2.0 micron diameter of the crystalline structure shown.  These
excitons will travel to the quantum junction with the translation circuitry of the photoreceptor cell by one of several
means.  The important point is that there travel velocity is finite and the resulting ensemble of excited electrons
exhibits a finite delay time between excitation and arrival at the boundary where excitation can occur.

The lifetime of excitons in the π∗ band is very long relative to events associated with vision, i.e., the chromophores
are not known to fluoresce under physiological conditions.  They instead become transparent (“bleach”) as
discussed in Section A.2.4.3.

Upon arrival at the boundary, the excitons are prepared to give up their energy if there is a quantum mechanical 
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Figure A.1.1-3 The expanded model of the Photoexcitation/de-excitation process.  The circular tube at the top is to
suggest the incident light beam falling on a particular surface of a disk within an outer segment.  The arrow
emanating from the tube indicates the physical position of a photon about to be absorbed by the chromophore on
the surface of the disk.  As a result of this absorption, an excited electron appears at a distance, γ, from the
disk/dendrite interface.  The other arrows and notations will be defined in the text.

opportunity to do so.  This opportunity is provided by the input structure of the dendrites.  Under normal
conditions, each exciton will give up its energy and be de-excited back to the ground state, n, in exchange for a free
electron being released within the junction of the first Activa of the dendritic structure.  

At any given time the absorption coefficient of the liquid crystal associated with a given disk (or possibly a surface
of the disk if the coating is fractured along the disk edge), is proportional to the number of unexcited electrons in
the n band given by nu = n - ne

A.1.3.3 Transient operation

The transient performance of the transducer is quite straight forward.  However, it does include a state variable. 
Upon the application of illumination, the absorption coefficient is directly proportional to the number of unexcited
electrons in the n band.  If the photoreceptor has been in the dark for some time, all of the available electrons are
in the n band and nu = n.  If however, the photoreceptor was recently illuminated, it is possible some of the excited
electrons have not yet been de-excited.  In that case, the number of available electrons is nu = n - ne.  Once a
photon is absorbed, an exciton appears in the Π∗ band within less than a microsecond.  The travel time to the
boundary is appreciably longer and is a function of how many excitons are in the band.  Once at the boundary, de-
excitation occurs in less than a microsecond under physiological conditions.  The result is that the “attack”
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transient response of the transducer to illumination, the time to generate excitons in the Π∗ band,  has a short time
constant and the “decay” transient response, the time to clear the Π∗ band,  has a much longer time constant. 
However, these are not the time constants of interest in vision.  

In vision, the time constants of interest are related to the boundary situation.  The attack time constant related to
vision is a function of the travel time between the creation of an exciton and its arrival at the boundary, ready for
de-excitation.  This time constant is a function of the illumination level.  The decay time constant is related to how
long it takes to clear the Π∗ band of excitons after the illumination ceases.  Normally, this time constant is
independent of the prior illumination level.  The entire equation of the transient response of the
transducer/translation process is given in the Photoexcitation/De-excitation Equation, (P/D) given in Appendix A. 
The attack time constant of the combination is quite variable, extending from less than one millisecond for high
illumination to greater than one-half second for very low illumination.  The decay time constant is nearly constant
at a given temperature.  For humans, its  value is 0.525 seconds.  These are only two of the time constants
important in vision.  They are essentially independent of any metabolic conditions occurring in conjunction with
the active circuitry of the eye.

A.2  The Complete Impulse Solution of the P/D Equation for the UV, S & M channels

As noted in the introduction, the impulse response of the transduction mechanism completely defines the internal
elements of that mechanism.  Thus, the development of a P/D equation that completely describes the observed
response of the sensory neurons also describes the specific internal elements of that sensory neuron.  The goal of
this section is to develop that P/D equation in its entirety (limited in detail only by the available performance data).

To obtain the true impulse response of a system requires the excitation be applied for an interval less than one-
third of the time to the first peak in the response waveform.

A.2.1 Methodology 

After several iterations, the author has found the P/D equation can be solved if interpreted as a first order linear
system.  Such a system can be described by a first order linear differential equation.  The equation goes beyond the
typical textbook form in the complexity of the driving function, qf.  This driving function will be developed in its
entirety, and then several simplifications will be developed that apply to specific experimental situations.

A complexity not addressed in previous analyses seeking the P/D equation of the neural transduction process is the
effect of temperature.  This effect is significant in vertebrates, and is a controlling parameter in ecological
diversification among the animals.  This complexity will be addressed in Section A.2.2.3. 

A.2.1.1 Mathematical Tools

Documenting the transient performance associated with the P/D Equation requires the use of advanced
mathematics.  While the problem can be conceptualized mathematically in terms of convolutions and real
variables, the appropriate mathematical forum is the use of LaPlace or Fourier Transforms of functions with
complex variables.  Complex variables are those with a real and imaginary part.  In the time domain, the real part
describes the amplitude profile of the function with respect to time.  The imaginary part, usually described as jθ,
describes the time delay preceding the beginning of the amplitude function (with respect to the input stimulus).

It can be shown that the Fourier Transform of the convolution of two time functions is equal to the product of the
Fourier Transform of each of the individual time functions.  The Inverse (Fourier) Transform of this product is
then the desired time function of the desired convolution.

Operating in the frequency domain provided by the Fourier Transform is preferred because the characteristics of
the impulse function and a square wave function are more easily characterized mathematically in this domain.

An impulse function is defined in the time domain as a short pulse of Amplitude A and duration td which
maintains a constant product of A and t while td goes to zero.  When the product of A and td is normalized, such a
function is usually defined as the unit impulse function and given the designation U0(t).  It is also known as the
Dirac δ function.  In the frequency domain, U0(t) becomes U(s) when dealing with complex variables, s = σ + jω, 
or U(ω) when dealing with real variables only.  In either case U(s) and U(ω) are equal to a constant for all values of
the variable.
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A unit step function is defined similarly, U–1(t) = a unit step or Heaviside function.

A square excitation function is defined in the time domain as a short pulse of constant Amplitude A and constant
duration td.  The result is a constant product of A and td over a given interval.  There is no unique designation for
this type of function.  When limiting the discussion to Laplace transforms, t /positive, it is frequently designated

U(Δt) = U–1(0) - U–1(Δt)20. Eq. A.2.1-1

where Δt is the duration of the pulse.

It can be shown that the response of a linear, time independent network to an input in the form of an impulse fully
characterizes the transient performance of that network.  This characterization can then be used to describe the
response of the network to any other type of input stimulus, whether a ramp, square wave, sinusoid, or other
arbitrary wave shape.  Fortunately, the tendency in the last few years has been to stimulate retinas under test with
impulses because the equipment needed is generally simpler and fewer corrections to the data are required to
compensate for the non-ideal input stimulus. 

It will become obvious as the following analysis unfolds that the so-called “generator function” of the literature is a
direct representation of the impulse response associated with the transduction process under small signal
conditions.  It is not, however, the precise mathematical description of the transduction process.  This is due to
several factors.  The name “generator function” appears to be generic; with different investigators equating it to
different waveforms, either measured or predicted, for different points in the vision signal path.  It is also used to
describe either a voltage waveform or a current waveform, more or less indiscriminately.  As is developed
elsewhere in this work, the biological vision system is not based on linear impedances which provide a linear
relationship between the voltage at a point and the related currents.  The basic impedance of the vision signal path
is the diode; resulting in a non-linear relationship between voltage across an impedance and the current through
that impedance.

A.2.1.1.1 Practical experimental protocols

The use of a true impulse to stimulate a sensory neuron is usually impractical.  While a flash lamp can create a
very short duration stimulus, its peak amplitude is poorly controlled and its amplitude versus time is seldom
uniform.  
While the use of Xenon flash lamps is common in vision research, descriptions of their actual temporal
characteristics are rare21.  Whether they can be used to adequately emulate an impulse function or a square pulse
function depends on the experiment.  It is common to employ a stimulus that is of constant duration and constant
amplitude and allow the amplitude to be adjusted during the test sequence.  In this work, such a quasi-impulse will
be described by the function U(F,td) where the amplitude is given by F and the duration of the stimulus by td.

It must be noted that the actual physical stimulus must have a duration that is much shorter than the shortest time
constant of the function under evaluation.  A factor of at least 3:1 is usually required.  In the laboratory, a common
criteria is to require the stimulus duration, tS, be less than 10% of the interval to the first peak (major feature) in
the response to the stimulus.  These two criteria are similar.  The response under such a criteria has been found to
represent the true impulse response of the network adequately.

As a general rule, the pulse ending transient associated with U(F,td) should not occupy more than 10% of the total
interval. td.  Otherwise, the variation in the amplitude of the stimulus must be considered in analyzing the
measured response.

A.2.1.1.2 The occurrence of finite delays in responses

In the computation of the temporal response of a network using the tools of Fourier and Laplace transforms, an
imaginary term, jθ, in the computed temporal response, f(t + jθ), represents a pure delay between the time of the
stimulus and the beginning of the response.  For first order (exponential) responses, this delay ends with the abrupt
departure of the response from the nominal zero response level.  This delay is easily measured and is much more
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relevant than the time for the response to reach its first maximum (or 90% of its maximum).  Failure of the
measured data to show an abrupt departure of the response from the baseline is usually an indication of an
inadequate test set.  This inadequacy leads to an overall system that is second order; the response departs gradually
from the baseline.

A.2.1.2 The mathematical modeling process

To obtain the response of a physical system, it is generally necessary to describe the process as one or more
differential equations as functions of time.  Since there are a limited number of these differential equations that
show up repeatedly, there solutions have been tabulated.  This is a great aid to the scientist and engineer.  Once
formulated, the differential equation can be solved rapidly if the applicable boundary conditions are known. 
Hodgkin used this approach in 1964.  However, he did not describe the boundary conditions adequately.  One of
his results was a special case of the general solution he sought.  However, in the absence of the general solution, it
was not possible to identify the special case.

A.2.1.3 Alternate mathematical outputs

The complete solution of a differential equation with complex variables can be a formidable equation.  It is
frequently desirable to try and separate the real and imaginary parts.  This appears to be easily accomplished with
regard to the P/D Equation as will be shown below.  

To obtain the solution, it is generally necessary to employ two distinct equations.  The second equation is usually
called the auxiliary equation.  The auxiliary equation is needed to separate the variables.  It may not be intuitively
obvious to the inexperienced mathematician.

The complete solution occurs in two distinct forms.  The response to an impulse excitation is basically the transient
response of the system.  For a realizable system, it always dies out over a finite time.  The other form  represents
the complete solution in response to a step function.  This response illustrates both the transient performance of the
system and its steady state gain function (the relative amplitude between the excitation and the response).  The
description of the system to a square pulse excitation is usually obtained in two steps.  The complete form of the
response is evaluated up to a time equal to the length of the pulse following  the excitation by a step function.  The
system is then re-evaluated by treating the end of the square pulse as a second negative step function.  The system
at hand is a bit more complicated due to delays in the system.  Because of these delays, the output does not occur in
time synchronism with the input stimulus.

These various forms are useful at different stages in the analyses of vision.  They will be treated separately below. 
In general, solutions will be presented that separate the transient (impulse response) forms from the steady state
and square pulse forms.  The results will also be factored into their real and imaginary components.  The
imaginary component will be defined as the intrinsic delay of the circuit.  It will be shown that this delay is a
strong function of the excitation stimulus and the temperature of the subject, δ(F,T).  The real component will
provide the amplitude profile of the response.  It will frequently be labeled R(t) but will usually be a function of a
long list of variables.

A.2.1.3.1 The case of prior adaptation

The use of adaptation in vision experiments introduces a level of concentration of excited electrons into the π*
level of the liquid crystal of the chromophores prior to the application of the primary stimulus.  To obtain the
correct prediction of the response of the system, it is necessary to introduce this level of prior excitation into the
equation.  This can be done by solving the P/D Equation for the steady state of the system prior to application of
the primary stimulus.

A.2.1.3.2 The case of sinusoidal stimulation

As in the above paragraph, the imposition of a sinusoidal primary stimulus implies the prior establishment of a
steady state situation in terms of average background level.  To obtain the correct prediction of performance by the
P/D Equation, the level of excitation prior to imposition of the sine wave must be established.  If there was no prior
adaptation, the initial response will consist of a transient related to the average intensity of the sine wave stimulus
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plus the response to the sine wave component.

A.2.1.4 Unusual nature of transport delay with temperature

The mechanisms involved in the transient response of biological systems are unusual.  The transport mechanism
related to the movement of excited electrons within the π* band of a liquid crystal is much more sensitive to
temperature than commonly found in solid state semiconductors.  The transport velocity appears to be
discontinuous near the freezing point of water (actually the hydronium ion) and at a higher temperature probably
related to the change of state of the chromophores from the liquid crystalline state to a liquid state (disruption of
the liquid crystalline lattice).  Within this narrow range of about 50 Celsius, the sensitivity of the transport
velocity, and therefore the delay, to temperature does not appear to follow the Arrhenius model.  Although the
difference may be due to a scaling factor, the change is more than thirty times larger than expected according to
Arrhenius.

A.2.1.4.1 The time constants of an animal vary with temperature

The above paragraph shows the sensitivity of the recorded laboratory data to the temperature of the specimen.  This
fact has been documented by Charlton & Naka (See Section A.2.2.2) and it helps interpret the vision data base.  
Because of this fact, it is necessary to be very explicit when working in the laboratory.  Precision of a quarter of a
degree Celsius at the specimen, not a nearby substrate, should be sought.

To simplify reporting, it may be desirable to standardize the time constants with reference to a given temperature. 
0, 23 (nominal room temperature) or possibly 37 (nominal human core temperature) Celsius might be candidates. 
By adopting this methodology, the actual measured coefficients could be described in terms of absolute values for
the species and a scale factor related to the measurement temperature.

A.2.2 The Complete Model (mathematical)

To obtain an appropriate mathematical model of the transduction process, it is necessary to have a clear
understanding of the underlying physical circuit and its operation as developed in Chapter 12.   

Two waveforms are of interest here, the current waveform collected from the outer segment of the photoreceptor
under stimulation and the generator waveform measured at the pedicle of the photoreceptor cell.  The current
waveform collected from the outer segment using suction pipette techniques. provides a nearly direct measure of
the transduction process.  This current is labeled the Class C waveform.  It represents the collector currents of all
of the first Activas of the outer segment operating in parallel.  This current accurately represents an amplified
version of the transduction current presented to the first Activa, also known as the adaptation amplifier, of the
photoreceptor.

The generator waveform is the colloquial name for the voltage at the pedicle of the photoreceptor cell following
stimulation of the cell by an impulse of proper spectral wavelength.  This waveform at the pedicle of the
photoreceptor cell is labeled a Class D (voltage) waveform in this work.  A class D (current) waveform can also be
obtained at this location using patch clamp techniques.  The current waveform is fundamentally different than the
voltage waveform.   This voltage is formed by the passage of the distribution amplifier output current through the
diode impedance provided at the pedicle of the cell.  The character of the waveform changes as a function of
impulse size.  Under small signal conditions, the waveform generator is a faithful reproduction of the Class C
waveform at the output of the adaptation amplifier.  Under large signal conditions, the generator waveform shows
compression due to the diode characteristic of the distribution amplifier load impedance (See Chapter 12).  Under
impulse excitation, the generator waveform of the L–channel photoreceptor cell may differ from the other spectral
types due to the mechanism outlined in Section 2.5.  However, within the color constancy region of vision, the
difference is not significant.

To obtain the complete P/D equation, it is necessary to:

+   set up an analog to the physical processes involved in the photoreceptor cell

+ define the primary and any auxiliary differential equations representing the analog

+   solve a differential equation with constant coefficients  but complex arguments. 
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+   evaluate the constants of the solution based on the original analog.

Note:  For those attempting to verify this result, it is necessary to utilize the complete Laplace
transform with complex values of the argument, s.  If the argument is limited to a real argument,
the complete solution will not be obtained and the delay characteristics of the solution will be
lost.

In the remainder of this section, complex arithmetic will be used of the form z = x + jy.  Euler’s
Formula will also be used;  ej2 = cos 2 + jsin2.  For discussion of this notation, see Kaplan22 or
other text on Advanced Calculus.  The delay term in the overall photoexcitation/de-excitation
function will be taken as the real part of the argument of the expression ej2 in seconds.

Starting from the expanded model of Section A.1.1, the required equations can be defined in a piece-meal manner
and then combined to create the overall differential equation required.  This is the standard approach used in
obtaining the response of any physical system.  This approach is quite general and can be used for nearly any
problem involving coefficients for the various terms of the equations which are fixed relative to the variables of the
equation.  The equations need not be linear or homogeneous.

A critical feature of the model is the isolation of the excitons absorbed by a single photoreceptor into very small
independent groups by means of the disks of the OS of Chordata or the orange peel structure of the ommatidea of
other phyla.  Without recognition of this structural fact, the equations would become quite different (and the
performance of the photoreceptor would be quite different).  The criticality of this feature with regard to the
spectral response of the photoreceptors is discussed in Chapter 5.

The Standard form of the differential equation expressed in the temporal domain will be used here.

τA (dq/dt) + q = Q2Aqf Eq. A.2.2-1a

where q is the number of excited electrons at any time, qf is the time dependent forcing function driving the
solution, Q2 is a constant term related to qf and τ is the time constant of the process.  It contains only the first
derivative of q with respect to time and is therefore a first order differential equation with respect to time.

The standard solution for this equation is given by:

        Eq. A.2.2-1bq q Q er
t T= + ⋅ − −

1
1( ( )/ )τ

       where qr
 =  the response function

   Qi
 =  the coefficient of the exponential transient

    T1
 =  a constant describing the function at time equal zero

The response function is taken from tables of pairs of response function and forcing function .  See Trimmer23 or
any text on the response of physical systems.

The forcing function, qf, is key to the solution of this equation.  Hodgkin, and other earlier investigators have used 
a simple forcing function that did not adequately reflect the details of the differential processes involved.  It is the
more refined forcing function that provides the unique solution to the P/D Equation.  With this forcing function,
the delay in the resulting response is seen to vary continuously as a function of excitation.  In addition, the overall
function is seen to exhibit two distinct time constants.  

Evaluating and combining the terms in the above equations for a specific situation leads to the complete
mathematical solution to the process described.  The following sections will evaluate these individual terms. 

A.2.2.1  The basic photoexcitation equation
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In the analog of Section A.1.1, let the total number of available n-electron positions associated with a single disk
or segment be n, the number of unexcited and available n-electrons be nu  and the number of excited electrons (and
therefore unavailable for initial excitation) be ne .  ,1  will describe the number of electrons moving from the
unexcited reservoir to the excited state (the n-electron band and the B* band of the chromophore) due to photon
excitation.  The rate of excitation is then:

,1 = FAFA(n - ne)  = FAFAnA(1-(ne/n))   Eq. A.2.2-2a

where F = radiant flux in photons/sec micron2

           F = absorption coefficient in electrons-microns2/photon
           ,1= rate of electron generation in electrons/sec.

This process is believed to occur on a quantum-mechanical time scale, i. e. there is no appreciable time delay due
to excitation compared to the milliseconds involved in the following transport process.

The above expression must be expanded.  

ε1 = FA σA(n – ne – na) = FA σAn(1 – (ne - na)/n) Eq. A.2.2-2b

A.2.2.2  The basic de-excitation equation

Referring again to [Figure A.1.1-2], the de-excitation process is an entirely quantum-mechanical process.  It is not
necessary that the energy bands join or overlap across the disk/dendrite interface as suggested by the figure. In fact,
the energy band associated with the chromophores of the disks are separated from the energy band of the base of
the first Activa by the dendrolemma of the microtubules.  However, the energy is transported across this boundary
without difficulty.  The energy can be said to exist as an exciton, or phonon, while it is in this area.

The characteristics of the de-excitation equation appear to be quite simple.  They  can be described by means of a
simple exponential decay process:

,2 =  nae(-t/J) Eq. A.2.2-3

where na describes the number of excited electrons available for de-excitation.

The temporal characteristics of this simple equation are obvious.  The available excited electrons are de-excited
with a time constant, τ.  What is not shown here is that an equivalent event occurs within the liquid crystalline
base material of the Activa.  An electron-hole pair is created for each electron de-excited.  The free electrons
formed in this process form the current within the dendritic structure of the photoreceptor cell.  For all practical
purposes, each excited electron of the chromophore has been transferred to the dendrite and freed.  

A.2.2.3  The transport  equation

This section addresses the question of how and when the excited electrons of the chromophore reach the interface
with the neural system of the photoreceptor cell.  This portion of the overall equation can not be expressed with the
desired mathematical precision in terms of the underlying factors.  The situation at the atomic level within the
excitation band of the liquid crystal requires more careful modeling.  However, it can be approximated based on the
observed performance exhibited by the overall P/D equation.  The dominant factor appears to be the mobility of the
charged excitons within the B* band.  These charges exhibit a mobility that is an exponential function of the
“biological temperature”, the temperature above the freezing point of water.  There is also a minor factor related to
the number of excitons in the B* band at any instant.  This factor appears in the overall P/D equation as a ratio of
the instantaneous irradiance to a reference irradiance raised to the 1/6 th power.  It is probably caused by the
presence of multiple excitons in the same B* band of a given disk and the resultant mutual electrostatic repulsion
causing an increase in the velocity of the individual excitons as the irradiance is raised.

A.2.2.3.1  The basic temperature parameter

The total number of excited electrons,  ne, at any instant can be described as follows:

+  some are traveling between their point of creation and their ultimate point of translation, nt
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Figure A.2.2-1 Intrinsic delay as a function of temperature and illumination.  From various sources.   L7 is
Limulus at 7 C (with a background) from Fourtes & Hodgkin.  LH is Limulus at an unspecified temperature from
Hartline.  L5 is Limulus at 8 C from Fig. 5 of Fourtes & Hodgkin.  L3 is Limulus at 8 C from Fig 3 of Fourtes &
Hodgkin.  TU is turtle at 21.8 C from Baylor, Hodgkin & Lamb.  HU is human at 37 C from Cideciyan.

+  some are located at the point of translation and are awaiting translation, na. 

Translation in this case, means de-excitation of the exciton back to the n-electron band of the liquid crystal
coincident with the creation of a free electron in the associated neural structure of the inner segment (IS),
specifically one of the microtubules (dendrites) surrounding the disk of the outer segment (OS).

The expression of interest here is the time delay given by the quotient representing the distance traveled by the
excitons divided by the velocity of those excitons.  

It is appropriate to look at the data in Figure A.2.2-1.  This figure combines the values of the intrinsic delay, the
numeric value of jθ,  extracted from the data of the investigators referenced in the first paragraph.  Their data was
digitized and a tangent was drawn between the lower portion of the rising portion of each waveform.  This tangent
was extended until it intersected the zero response axis.  The intrinsic delay was determined by the time of this
intersection.  Unfortunately, the absolute calibration between these investigators is unknown.  Therefore only
broad-brush calculations are appropriate, particularly with regard to irradiance levels.  Unfortunately,  only a few
data points could be found for the human and the source data was actually for a latency, defined as the sum of the
time delay and the time for the rising waveform to reach 10% of its maximal height.

Walther provides a graph of delay versus illumination characteristics for the primitive eye spots of Annelidia at 20
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Celsius24.  The illumination was varied over six log units.  The graph parallels the 22 Celsius curve of the above
figure and would be plotted at the 20 Celsius point within the calibration accuracy of the data.  The similarity of
the data for all species and phyla support the commonality of the architecture of vision among all biological
species.

By combining the data of Walther and the above figure, a composite of the intrinsic delay associated with vision in
all of the major phyla, except Arthropoda,  is available.  Several conclusions can be drawn from this figure, and the
data of Walther;  

+  The delay in response is clearly a function of the irradiance

+  The graphs of delay versus irradiance are relatively straight and also relatively parallel (with 
the exception of the 1934 data from Hartline)

+  The delay in response is clearly a function of the temperature

+  The graphs form bands which are grouped according to the temperature of the environment

A.2.2.3.2  The temperature parameter in the transport equation.

The time delay in a semiconductor is calculated from the distance a charge must travel divided by the average
velocity of that charge; and that velocity is given as a function of the electric field encountered times the mobility
of the charge.  The mobility of a semiconductor is a complicated function of temperature.  It is likely that the
mobility of a biological material, and more precisely a liquid crystalline material,  is also a complicated function of
temperature.  Because of this situation, it is best to take a simple approach to determining the time delay in a
biological material.

Using the high irradiance values from this figure, abscissa scale marked 1.0, it is seen that the “across species”
time delay is clearly a function of temperature according to the following table:  

Real part of θ(37) – 3.0 milliseconds from man

Real part of θ(21.8) – 10 milliseconds  from turtle

Real part of θ(8) – 75 milliseconds from limulus

By plotting these values, the relationship:
 
θ(T) = 0.20A e -(T-273)/8 seconds Eq. A.2.2-4
or
θ(T) = 0.18A e -(T-273)/9 seconds Eq. A.2.2-5 

for T in degrees Kelvin &  T>281K  (8 degrees Celsius)

are suggested.  The roughness of the data will not support a tighter determination.  However, for simplicity, the
following material will use the value of 8 in the denominator of the argument.

Hille addresses the change in response with temperature in the quest to understand ionic channels25.  He settled on
a factor he labeled Q10 raised to the power of (T-22)/10 as the equivalent of the above equation over the more
limited range of T>22 Celsius.  

Relying only on the lower portion of the slope of the rising response, the transport delay parameter is not corrupted
by the saturation effects frequently associated with the Class D waveform.  The compression problem does affect
the calculations of many investigators.  The calculation of the rise time from the 10% point to the 90% point or the
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26Walthers, J. (1965) Single cell responses from the primitive eyes of an annelid.  in The functional organization of
the compound eye. Bernhard, C. editor.  NY:Pergamon Press
27Charlton, J. & Naka, K. (1970) Effects of temperature change on the catfish s-potentials. Vision Res. vol. 10, pp.
1119-1126

Figure A.2.2-2 Total rise time and amplitude response
for the S-potential in the channel catfish.  Solid lines
from Charlton & Naka, 1970.  Dashed lines from this
work.  The P/D trace represents 530e(-T/8).  The S-
potential shows an increase in rise time over that
expected from the P/D Equation alone.  This may be due
to subsequent band limiting processes.  The latency
defined by Charleton & Naka is slightly longer than the
intrinsic delay expected from the P/D Equation.  

peak can be very imprecise.  

Note, the Hartline data for Limulus @ 7 degrees Celsius was collected in the presence of a background light.  This
corrupts the data for the purpose at hand. 

A.2.2.3.3  The irradiance parameter in the transport equation

Reviewing Figure A.2.2-2, it is clear that the delay in the P/D equation is a function of irradiance.  The degree of
parallelism displayed in the lower traces of this figure is remarkable.  As noted above, only the 1934 data of
Hartline deviates from the set.  From this data, the change in the delay due to a change in irradiance is seen to be
very similar across species and to be given by the following ratio;

θ(F) – (F/Fd)-1/6  or  (Fd/F) +1/6 Eq. A.2.2-6

The constant Fd must be included because of the lack of a common calibration between the sources of the data. 

 Walthers26 provides another piece of relevent data; he found for the leech, Hirudo medicinalis L, that the latency
of response was inversely proportional to the irradiance, changing  from 30 to 300 msec in response to a change of
6 log units in irradiance.  This is precisely a sixth root relationship as determined above.  Therefore, the
relationship between the intrinsic delay and irradiance is established for all major phyla except Arthropoda. 

A.2.2.4  The impact of temperature on the excitation and de-excitation equations

Charlton & Naka27 provided additional information as
well as a list of related work.  They were recording S-
potentials of a fresh water channel catfish.  Their data
is in response to a long radiant pulse of 320 msec. and
they define latency as the time between the start of a
320 msec. pulse of irradiance and the 10% point of the
resultant response.  They also provide a curve of
risetime between the 10% and 90% point as a function
of temperature.  Their figure 3 is shown as Figure
A.2.2-2.  For the purpose at hand, the rise time curve
for the S-potential includes all of the delays involved
in the response from the P/D process, the translation,
the photoreceptor neuron and any other neurons up to
the point of reading the S-potential, which they state
is of the L- type.  Although they state the S-potential 
curve is hyperbolic (as opposed to exponential), this is
unlikely in a biological system.  They point out that
things are changing rapidly for temperatures below 7
degrees centigrade, as witnessed by the greater
randomness of the points near and at the ending of the
amplitude response at 7 degrees.  Bearing this in mind
, the rise time curve is well characterized by an
exponential function with a constant of  8 degrees in
the denominator and the temperature varying between
8 and 28 degrees; this equation is in comfortable
agreement with the rough value found above.
 
Figure A.2.2-3 repeats their figure 4, with the
addition of a bar indicating the irradiance interval. 
Because of the length of the pulse, the overall
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waveform is clearly not the impulse response of the signal channel; it is the response to a long duration pulse.  The
rising edge clearly shows a change in slope due to the termination of the pulse.  The figure indicates the time delay
ranges from 60% of their defined latency at high irradiance to about 80% at low irradiance.  By eliminating the
time to go from 0% to 10% amplitude from this latency, i.e. projecting a tangent to the rising waveform back to the
abscissa, a true delay is obtained which can be approximated by an exponential similar to that found above.

For the channel catfish, Ictalurus punctatus, and using the terminology of Sec. A.2.1.1, an empirical value for the
time delay due to temperature will be taken as:

2 – 0.20Ae –(T-273)/8 seconds for  281K> T > 301K Eq. A.2.2-7

Figure A.2.2-3 actually provides a broader perspective.  It shows that all of the following are a function of
temperature in the case of the S-potential;

+  the delay 

+  the slope of the rising edge

+  the initial slope of the falling edge and

+  the amplitude of the resultant waveform 

Furthermore, it shows that the signal is encountering hard limiting at approximately two vertical scale divisions or
about 85 mv. (The voltage scales are slightly different between the A and B portions of the figure.)  At higher
temperatures, it would be necessary to reduce the irradiance to obtain comparable waveforms at the S-plane.
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Figure A.2.2-3 The effect of temperature on Class D generator waveforms.  Recordings were for a single cell. 
Temperature was cycled from 15 to 4 Celsius (A, 1 to 7) and back to 15 Celsius (B, 1-7).  The intensity and
duration of the flash was constant.  The flash duration is indicated by the bar.  Horizontal scale ends at 1.5
seconds.  Peak voltage in saturated traces was about 42.3 mV (for max. V = 1.540).  Below saturation, both leading
and trailing edge time constants vary with temperature.  Peak amplitude also varies directly with temperature. 
From Charlton & Naka, 1970.

These two figures confirm the presence of the term KT in both exponential terms of the P/D Equation amplitude
response.  They also confirms the presence of KT in the scaling factor of the P/D Equation. It can be associated with
the term, σ.  Hence,

τ eff = KT@ τ intrinsic and σeff = (1/KT)@σintrinsic Eq. A.2.2-8

The intrinsic delay also varies monotonically with temperature, thereby confirming the presence of KT in the
intrinsic delay of the waveforms.

The saturation level appears to be largely independent of temperature.  This would confirm the saturation level is
largely independent of the P/D mechanisms and is determined by the amplifiers within the photoreceptor cell.

A.2.2.4.1  The temperature parameter as it affects amplitudes

The general shape of the waveforms in Figure A.3-3 are similar enough to a P/D waveform to suggest that this
shape is due to the P/D response to a finite duration excitation.  If true, it suggests that each term in the P/D
Equation is a function of temperature, at least in the catfish.  It could be argued that the change in slopes are
merely a function of a gain mechanism independent of  and occuring subsequent to the P/D response.  Since the
slopes and overall shapes are changing in a manner characteristic of the P/D equation, it does not appear that a
separate gain mechanism is involved.



24 Processes in Biological Vision

28Baylor, D. Hodgkin, A. & Lamb, T. (1974) The electrical response of turtle cones to flashes and steps of light.  J.
Physiol. vol. 242, pp 685-727

Figure A.2.2-4 Arrhenius plot of time to maximum
response measured from the middle of an 11 msec pulse
for turtle photoreceptors.  Values at lowest temperature
taken with flash of 50% of intensity of other flashes. 
Modified from Baylor, Hodgkin & Lamb, 1974.

By plotting the slopes as a function of temperature, the data again suggests that the equation for both the rising and
falling parts of the waveforms may contain the term e –(T-273)/8  in Kelvin, or e –T/8 for Celsius temperatures.  

A.2.2.4.2  The temperature parameter as it affects time to peak

The above discussions make it clear that the delay before the appearance of the generator waveform (or the P/D
equation as defined here) at the output of the photoreceptor cell is related to temperature.  It appears this delay is
following the normal Arrhenius relationship for velocity of chemical processes.  Further review of this data may
also allow determination of the activation energy associated with this temperature effect.  Based on this review, the
overall P/D equation must be formulated as a function of the temperature of the organism; and, since all features of
the output waveform appear to be affected as a group, it appears the P/D equation includes temperature in the
denominator of all of the exponential terms.  The following discussion will show this to be true for values of the
term σ@F@τ significantly greater than 1.0.

Careful review of the data of Cideciyan et. al. also shows the time delay is also a function of the irradiance.  This
relationship clearly calls for the forcing function of the differential equation to consist of a complex argument.]]

Figure A.2.2-4 is modified from Baylor, Hodgkin & Lamb28.  The presentation has been modified to illustrate the
nominal biological temperature range, to highlight the nominal temperature of humans (37°C) and to show a time
constant multiplier for animals operating at lower temperatures than man.  They summarized a series of
experiments measuring the time to peak of the generator waveform measured by the voltage at the pedicle of a
turtle photoreceptor.  The data show that the time to peak for this waveform was well described by a straight line
on an Arrhenius plot.  They interpreted this data as related to an activation energy for an undefined chemical
event, of about 10 kcal/mole (~0.43 electron-volts).  In the theory of this work, the time to peak is the sum of an
absolute delay plus the rise time of the waveform to peak.  While the underlying transport mechanism is an
exponential function of temperature, it does not involve a chemical reaction.  

The data suggests that the time constants associated
with the P/D process are proportionately longer in
animals operating at temperatures lower than 37
Celsius.  By using the time constants of humans as a
reference, the overall P/D Equation can be
considerably simplified.  The factor of temperature can
be eliminated from the human P/D Equation.  For
other animals, the complicated temperature terms can
be replaced by a simple time constant multiplier as
shown.

 
A.2.2.4.3  The combined
temperature/irradiance delay

Combining the above two factors, a rough empirical
value for the overall time delay function for the P/D
can be given by the following equation;

θF C θT = 0.20 C (Fd/F)+1/6 C e –(T-273)/8 seconds Eq. A.2.2-
9

 
where Fd is the value of the irradiance corresponding
to 1.0 in Figure A.3-1 for the various sources as given
in the following table.
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TABLE A.3-1
Critical photon flux parameter, Fd

--------------------------------------------------------------------------------------------------------
|   animal |   Fd |       source of data          |
--------------------------------------------------------------------------------------------------------------------
|               HUMAN | 4.6 log scot td sec        Cideciyan & Jacobson
|               LIMULUS | 1.8@1011 quanta/sec Fuortes & Hodgkin
| TURTLE | 67@106 photons/sec*:2 @644 nm.  Baylor, Hodgkin & Lamb 
---------------------------------------------------------------------------------------------------------------------

This single equation appears to apply across species.  It may also illuminate a significant parameter of animals;
how fast their sensory signals respond is a major factor of the ambient temperature of the organism.  The delay
time involved in vision extends from nearly 200 milliseconds in animals at temperatures near the freezing point of
water down to only a few milliseconds in mammal (temperature range, 35-40C) and an even smaller number in
birds (temperature up to 43.5C).

A.2.3  The complete impulse solution to the P/D Equation

The solution of this equation is the Complete Photoexcitation/De-excitation (P/D) Equation given by;

, σAFAτ …1.000 Eq. A.2.3-1
 

for the transduction process in any photoreceptor.  This equation consists of the first (amplitude) term, the second
term (imaginary term defining the intrinsic delay), and the third (transient response) term.

To be useful, the above equation must be applied in cases where the incident photon energy exceeds the band gap
of the neural tissue of the translation block (~2.34 eV) and the temperature in degrees Celsius, T, exceeds the
minimum viability temperature of the translation block tissue (~0° C).  Otherwise, see the modifications developed
in Section 12.6.

Figure A.2.3-1 illustrates the complete impulse solution to the P/D Equation, using two different horizontal scales. 
The intrinsic delay associated with each waveform is shown in the lower frame.  The response rises rapidly in
accordance with an effective time constant that is dominated by the attack time constant, that is a direct function of
the intensity of the stimulus.  As the attack portion of the equation approaches an asymptotic value, the attack and
decay portions of the response become equal and a peak is reached.  Following the peak, the effective time constant
becomes dominated by the term associated with the decay time constant.  The labels in the figure apply to the
entire function and not just the decay portion of the waveform.  As shown, the time at which the peak is reached
depends strongly on the product of the stimulus intensity, F, and the absorption cross-section, σ, of the
chromophore.    
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Figure A.2.3-1 The complete impulse solution to the P/D
Equation presented at two different scales.  Both frames
show the complete solutions, including the intrinsic time
delays.  No noise or band limiting is present.  All curves
depart from the baseline as first order responses.  The
dashed line is the degenerate or Hodgkin solution, σ@F@τ
= 1.00.  The curves are drawn for 37 Celsius and kd  =
0.00159.  The time to peak response is clearly the sum of
the intrinsic delay plus the rise time.

Note that neither the rising or falling portions of the
P/D response to an impulse is a true exponential.  In
both cases, they are the difference between two
exponentials.  The rising portion approaches a straight
line for high values of σ@F.  The falling portion is
always a complex difference between two exponentials
except for the Hodgkin condition described below
(Section A.2.3.4).

The above equation is the complete solution to the
Photoexcitation/De-excitation (P/D) equation of the
visual process in animals. For the special case where
FFJ = 1, the solution of the complete differential
equation must take a different form to avoid division
by zero.  The solution for this special case is given by
n(t) = n(t/J)e –t/J  where n(t) is equal to the number of
excited electrons ne at any time.  

This special case highlights a feature of the complete
equation, the two exponential terms reverse their roles
when passing through this value.  For FFJ< 1,    J
controls the initial slope of the waveform, for  FFJ >
1, J controls the terminal phase of the waveform.

It is important to note at this point, that with the delay
omitted and FFJ = 1,_the complete P/D equation
reduces to the equation that has been used by
Hodgkin, the Baylor team and others for years to
curve fit to their experimental data.  However, their
success has been distinctly limited by two factors:

+ the lack of the delay term.
+ the availability of only one “time constant”

controlling both the rise and fall characteristics of 
the equation.

To solve this difficulty, they have introduced
additional degrees of freedom into their equation by
raising the term (t/J) in front of the exponential to an
arbitrarily higher power, usually between 6 and 10. 
By the proper choice of values, this introduces a delay
in the rising protion of the calculated waveform but it
also eliminates the falling part of the calculated
waveform.  This has been justified based on the use of
filter theory to explain the delay.  However, as seen
above, the delay is due to a physical transport time
and transport theory is the correct approach.

There is a second problem with using (t/J)  raised to an arbitrary power.  When solved, such equation leads to a
higher order differential equation.  The initial slope of the calculated curve is no longer discontinuous at the end of
the delay interval.  Using the full P/D equation, it is possible to determine the delay term explicitly by drawing the
tangent to each of the waveforms at zero time after the delay.  This tangent can be approximated very well by
drawing the tangent to the rising characteristic and projecting it back to the crossing of the zero level of the
abscissa.

A.2.3.1  The impulse solution under small signal conditions
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29Copenhagen, D. & Owen, W. (1976) Functional characteristics of lateral interactions between rods in the retina
of the snapping turtle J Physiol vol 259, pp 251-282
30Baylor, D. Lamb, T. & Yau, K-W. (1979) The membrane current of single rod outer segments J Physiol vol 288,
pp 589-611

Figure A.2.3-2 Comparison of P/D Equation to the Class
D waveforms of a turtle photoreceptor cell.  Temperature
was 20° C.  Radiation was 514 nm.  Flash duration, 20
msec.  Data set from Copenhagen & Owen, 1976.

Figure A.2.3-3 shows how well the data of
Copenhagen & Owen follows the expected P/D
response of the snapping turtle29.  They used DC
coupling in their test set.  This largely eliminated the
second order curvature in the data waveforms prior to
the leading edge of each curve.  However, this fact is
obscured by the phosphor broadening of the
oscilloscope prior to the expiration of the intrinsic
delay, δ(F,T).  The specific direction of the incident
illumination was not specified but it appears to be
axially aligned with the outer segment.  They used
relatively low intensity stimuli and generated a
maximum voltage change at the pedicle of only 29
mV.  No saturation is apparent in the resulting
response.  They recorded pedicle voltages rather than
currents. Those authors were unable to account for the
shape of their response functions, relative to the
simplified form of the P/D equation used by Hodgkin
or using the even simpler Michaelis equation.  They
therefore introduced the term “overshoot” to account
for the higher peaks in the data.  This term is not
needed when the complete P/D Equation is used.   The
failure of their data to conform to the Michaelis
equation led them to conclude, “it is an inadequate representation of processes underlying the [photoreceptor]
response.”  Although they speak of the temporal response of their rod, they note its spectral response peaks at 520
nm, as do M–channel photoreceptors, rather than 498-500 nm as normally associated with the isotropic
photoreceptor absorption traditionally associated with rods.

The representation of their 20 msec stimulus is excessively wide in the figure relative to their scale on the right.

The complete P/D Equation fits the data of Copenhagen & Owens arbitrarily well, including the delay term. 
However, the curves of Copenhagen & Owens do not appear to be returning to the nominal zero level as expected
for an impulse stimulus.  They appear to be returning to an offset of 6-8 mV.  The presence of this offset when
recording the signals with a DC coupled test set may represent the change in the quiescent voltage of the pedicle. 
This change could be associated with a much longer time constant.  They associate the offset to rod-to-rod
interaction (summation).  They may be predisposed to this result based on the discussion in their introduction.

The vertical scale on the left is arbitrary and associated with the calculated P/D Equation.  The parameters used for
the overlay curves were temperature = 20°C, kd = 20, τ = 0.625 sec, and a range of σFτ values ranging from 0.3 to
10.5.  By further reducing kd, the absolute delay can be made to agree with the experimental data.  However,
additional curve fitting does not appear warranted by the precision of the experimental data.

A.2.3.2  The impulse solution under large signal conditions–saturation

The data of Copenhagen & Owens does not exhibit significant saturation even though it represents a voltage
change of up to 29 mV at the pedicle of a photoreceptor.   Baylor et al. provided a large set of data during the
1975-85 time period representing the class C current collected from the outer segments of photoreceptors.  The
stimulation was more intense and the recorded data shows significant saturation.  

Figure A.2.3-3 Shows the P/D Equation overlaid on the current data of Baylor, Lamb & Yau for the toad, Bufo
marinus30 combined with a theoretical amplifier characteristic of the first Activa, the adaptation amplifier.  The
summary of their paper clearly defines the conditions under which the data was collected.  This includes the fact
the reported maximum outward current shown was equal to the “inward current” in the absence of any excitation,
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31Baylor, D. Nunn, B. & Schnapf, J. (1984) The photocurrent, noise and spectral sensitivity of rods of the monkey
Macaca fascicularis. J. Physiol. vol. 357, pp 575-607

e.g., the actual net current through the circuit. was zero under saturation conditions.  The spectral response they
associated with their “red rod” peaked at 498 ± 2 nm in excellent agreement with the intrinsic spectral response of
the chromophores under transverse stimulation.  They follow the conventional chemical theory wisdom and
associate the inward current with the flow of sodium ions through the putative outer segment membrane (rather
than the flow of electrons through the electrostenolytic site and into the collector terminal of the Activa through the
plasmalemma of the neural tissue).  They did not control the temperature of their experiments adequately (18-25°
C) to allow precise comparison with the theory.  As was common in that time period, the investigators attempted to
apply a Michaelis equation to only the rising part of each waveform.  The P/D equation provides a complete
response equivalent to each waveform.

The pulse response at the bottom of the upper frame is
normalized in height and does not reflect the change
in stimulus intensity used to collect the waveforms. 
The waveforms also appear to be plotted to eliminate
any delay associated with the stimulus intensity.

The lower frame shows the nominal transfer
characteristic of the first Activa as developed in
Chapter 12.  It shows the current through the Activa
is directly proportional to the base current into the
device, ib, up to the saturation point where the device
stops exhibiting “transistor action,” the signal
amplitude is essentially equal and opposite to the
nominal electrical bias current.

The signal current in the upper frame is precisely as
predicted by the P/D equation up to very near the
saturation current of 20 pA for this circuit.

Figure A.2.3-4 Shows the P/D Equation overlaid on
the current data of Baylor, Nunn & Schnapf for the
monkey, Macaca fascicularis31.  Only the amplitude
profiles were provided.  No measurement of absolute
time delay was made.  Each trace is the average of
eleven flashes of light.  No range bars or precise
excitation intensity was given.  This data represents
the current at the collector terminal of the adaptation
amplifier within one photoreceptor cell.  For the lower
six responses, the P/D Equation overlays the
laboratory data precisely.  For the upper three traces,
saturation has become significant.  The level of
saturation is indicated by comparing the third highest
intensity trace and the predicted response (dashed
line).

Figure A.2.3-3 A comparison of the complete (current
mode) P/D Equation versus the data for toad.  A; data
from Baylor et al., 1979.  Each curve is the average of
several measurements.  B; nominal transfer characteristic
of the 1st Activa, the adaptation amplifier from this work.
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Figure A.2.3-4 A comparison of the complete (current mode) P/D Equation versus the data for monkey.  The solid
curves are for a single cell excited by plane polarized transverse 500 nm radiation.  The dashed lines show curves
based on the P/D Equation.  See text.  Modified from Baylor, Nunn & Schnapf, 1984.

More  important results emerge from this comparison.  Although not noted by Baylor, et. al., all of the non-
saturated traces peak at the same time after excitation.   Furthermore, all of the theoretical traces were for the
condition, σF = 6, τ = 0.035 seconds.  The product of these terms gives σAFAτ = 0.21.  This value is far below the
degenerate condition.  In this region, τ represents the time constant of the leading edge and 1/σAF represents the
time constant of the trailing edge.  Thus all of the traces exhibit the same leading edge time constant of 35
milliseconds.  Their apparent dfference in slope is due to the different scale for the traces due to more intense
excitation.  They all reach a peak after 150 ms according to the investigators (the published artwork suggests a
value of 135 ms).

The gain of the adaptation amplifier is at maximum for these low stimulus levels.  The dynamic range of the
adaptation amplifier can be seen from the noise level and saturation level.  The ratio of peak signal to RMS noise is
between 100:1 and 200:1.

As noted by Baylor, Nunn & Schnapf, the top two traces exhibited a long tail.  This may be caused by one of
several factors.  It may reflect the onset of adaptation where the amplifier gain begins to change with excitation
level.  The process both lowers the gain of the circuit and begins to establish a new DC level, at the output of the
circuit going to the distribution Activa.  Alternately, it can be considered an artifact of the adaptation amplifier
performance.  When forced into saturation, semiconductor amplifiers frequently exhibit a long tail following
excitation as they re-establish their normal operating regime.   This is due to the motion of charges within the
semiconductor required to re-establish the necessary charge density profiles at the atomic level.  More analysis
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32Smith, N. & Lamb, T. (1997 ) The a-wave of the human electroretingram recorded with a minimally invasive
technique.  Vision Res. vol. 37, no. 21, pp 2943-2952
33Cideciyan, A. & Jacobson, S. (1996) An alternative phototransduction model for human rod and cone ERG a-
waves: Vision Res. vol 36, no 16, pp 2609-2621

Figure A.2.3-5 A comparison of the complete P/D
Equation versus the data of Smith & Lamb (for impulse
excitation).  Also shown is the delayed Gaussian equation
proposed by Lamb.  The solid curve is the measured data
for a putative rod-isolated a-wave labeled 250k
Isoms/rod.  The P/D Equation is for σAFAτ = 1.875, τ =
12.5 msec. and σ F = 150 absorbed photon-seconds. The 
temperature is taken as 37 Celsius.

should answer this question.

These results suggest that the velocity of excited electrons in the π* band has been reduced.  The number of
electrons in a given region is so low that they are no longer subject to the enhanced velocity associated with their
mutual attraction.  Therefore, the transport equation used to determine the differential form of the P/D Equation
needs to be modified.  The effect is to insert a term such as (σAF +6) in place of σ@F in the second exponential and
the denominator of the scaling term of the complete solution.   The amplitude of the response becomes an
essentially linear function of the excitation in this region.

Figure A.2.3-5 compares the complete P/D Equation and the ERG data of Smith & Lamb32.  The P/D Equation is a
demonstrably better fit than the Michaelis curve suggested by Smith & Lamb for the first 15 milliseconds of their
measured data labeled 250k Isoms/rod.  After 15 milliseconds, the measured curve becomes more complex.  The
applicability of the P/D Equation to this region will be discussed in Section 17.6.2.  Note the distinct delay of 3.5
milliseconds before the departure of the P/D Equation from the baseline.  The theoretical curve is for a product of 
σ A F @ τ = 1.875.  The fit shown in this figure used a time constant, t, of 12.5 ms and σAF product of 150 photon-
seconds.  The time constant appears to match the descending part of the response well.  The fit appears excellent. 
From these numbers,   σ A F = 150 and the flux can be calculated as 1.5 x 10+6 absorbed photons per unit area.

When fitting the P/D Equation to ERG data, it is
necessary to pick data waveforms that do not show
excessive compression due to the amplitude of the
stimulus applied.  The data of Breton & Schuler, as
an example, shows considerable compression.  This
compression distorts the portion of the waveform due
to the underlying Class C waveform.  

The best method of calibrating the P/D Equation is
using actual Class C waveform data obtained from
probes (LERG waveforms, preferably obtained from
within the IPM as in the previous discussion).

There is a problem in that the effective absorption
cross section of a multi-layered disk stack is not
known.  If we take the absorption cross section as
equal to the physical cross section of a disk, σ = 12.5
sq. microns or 12.5 x 10–12 square meters, the
absorbed flux per photoreceptor would be about 12
photons per sq. micron or 150 photons per second per
photoreceptor.  Since the outer segment consists of a
stack of multiple disks, the absorbed flux per
photoreceptor would be expected to be a multiple of
this figure.

Cideciyan & Jacobson have recently criticized the
formula used in Smith & Lamb33.  They note the
Smith & Lamb formulation exhibits a constant
latency and an increasing slope with excitation.  They proposed an alternate formula, employing a three-stage filter
that exhibits a constant slope at high excitation and a shortening latency.  They did not address the low excitation
condition.  Like Smith & Lamb, their model relies upon three axioms of the conventional wisdom and remains
applicable only to the leading edge of the photoexcitation-de-excitation process.  Neither of these teams attempted
to interpret the fundamental mechanisms underlying the transduction process.  The P/D Equation of this work
provides the total solution to the process over any range of stimulus intensity and waveshape.  The P/D Equation
provides a complete explanation for the phototransduction problem.  It exhibits both a variable delay and a variable
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slope of the leading edge as a function of stimulus intensity– in agreement with the measured data.

A.2.3.2.1 The impulse generated voltage at medium to high levels

The typical measured P/D response shows a significant saturation at high stimulus levels that is not indicated in
the current generated by the P/D Equation.  However, when the generated current is converted to the voltage
response resulting from a diode load in the collector of the sensory neuron output Activa, a more accurate
prediction of the measured P/D response results.  Creation of the voltage mode P/D equation to match a specific set
of empirical data requires estimates to be used of the DC quiescent conditions in the sensory neuron of interest. 
The investigators do not often provide such estimates relative to the actual cell and its immediately surrounding
matrix.

When written in the voltage form, the standard diode equation can be used to convert the current mode P/D
equation to the voltage mode.

Eq. A.2.3-2V V V I I IT− = ⋅ ⋅ +0 0 0η ln( ) /

For the region of interest, the diode load is always biased positively and the current, I, is always much larger than
the reverse saturation current, I0.  Therefore, 

Eq. A.2.3-3

Figure A.2.3-6 shows this equation for the parameters shown.  No other biological parameters are involved.  VT is
a voltage equivalent of the specimen temperature in this equation.  The value of the parameter, η, is unknown for
biological diodes but is probably 1.0 (the value for most manmade materials other than silicon).  

To put the significance of this equation in context, a nominal neural electrolytic circuit is shown on the left.  The
circuit includes a grounded-emitter configured Activa inside the neuron with a diode,DP, acting as the load
impedance in the collector (axoplasm) circuit of the neuron.  This diode is formed by a special semiconducting
portion of the bilayer forming the axolemma.  This load impedance is connected to th biological power supply on
the exterior surface of the axolemma (shown by the shaded line).  The diode/power source combination is shunted
by the capacitance of the complete axolemma, CC.  The normal collector potential, VC, at the sensory neuron
pedicle is on the order of –70 to –101 mV under small signal conditions (shown as a dark bar).

The voltage-current characteristic of the diode, DP, is shown for four possible values of the reverse saturation
current, I0.  I0 is equal to 10–x amperes for the traces shown where the subscript of V indicates the value of x in this
argument.  The values of 154 mV and 134 mV are shown on the voltage graph for reference.  The power source,
VG–g, depends on the conversion of Glutamate to GABA to provide an electrical potential of 154 mV as described
in Section 8.6. The diode voltage, DP, cannot exceed the –154 mV potential supplied by the power source, VG–g,
except temporarily using current supplied by the collector to matrix capacitance, CC.  This is the saturation limit
usually encountered when performing in-vitro parametric tests involving patch-clamp experiments.  In-vivo,
approximately 20 mV of the power source must be dissipated across the emitter to matrix impedance, ZP.  Thus,
the practical diode potential limit is –134mV.

The value of the load diode reverse saturation current, I0, impacts the shape of the voltage-current characteristic. 
For I0 = 10–13, the curve shows considerable curvature and saturates at a diode current of less than 50 pA.  This is
precisely the situation shown in the earlier figure from Baylor Nunn & Schnapf for the monkey.  Their situation
may or may not be the typical situation in other neurons.  If the reverse saturation current is typical, they overdrove
the neuron.  Its maximum dynamic range was 30 pA.  The presence of noise in their waveforms even during
saturation suggests the majority of the noise is due to their test set.

In neurons with a lower value of I0, less saturation occurs.  Less signal transfer also occurs to the next stage,
through the diode DN.

V V V I IT− = ⋅ ⋅ +0 0 1η ln(( / ) )



32 Processes in Biological Vision

Examining the impedances associated with this diode characteristic is useful.  Many investigators have described
the impedance of the collector (axoplasm) circuit as part of voltage or current clamp experiments.  If a diode
voltage in the area of 85 mV is established for the axoplasm of a neuron with a reverse saturation current of I0 =
10–13, and current is injected into the axoplasm one impedance will be measured.  If instead, current is withdrawn
from the axoplasm, a significantly different impedance will be measured.  This is particularly true since the
collector of the Activa within the neuron is always reverse biased and therefore of high impedance.  Without an
investigator specifying the direction and magnitude of the current used, it is difficult to rely upon an impedance
measurement in the literature.

A.2.3.3 The Hodgkin solution, the P/D Equation at  σAFAτ = 1.000

The P/D Equation exhibits a discontinuity at σAFAτ = 1.000.  However, it is mathematically well behaved.  Thus,
the function can be evaluated at this point by taking its derivative.  The resulting equation is considerably simpler. 
It is Poisson’s Equation of the second order.

n(t)= (t/τ)Ce(-t/J) Eq. A.2.3-4

This is the equation used by Hodgkin in 1973 in an attempt to describe the Class C waveform of a turtle.  It will be
shown to fit the data of turtle at a specific illumination level (See Section 12.1.2.2 or Appendix X ).

A.2.3.4 Changes in effective absorption cross section–adaptation

All of the above material has assumed a single impulse applied to an otherwise dark-adapted sensory neuron.  If
more frequent impulses are applied or the sensory neuron is intentionally adapted to a higher average light level,
not all of the excited electrons will be de-excited before the next impulse.  The result is a depletion in the number
of available electrons in the ground state of each disk in the outer segment and a reduction in the effective
absorption cross section, σeff of the outer segment.  This change in the effective absorption cross section is the

Figure A.2.3-6 The diode equation as a function of current for the parameters shown.  Left; nominal neural circuit
with the plasmalemma shown in gray.  See text.  Right; graph of diode (DP) voltage versus diode current and
collector potential (VC) based on the nominal neural power source (VG-g).  Nominal in-vivo output is through the
diode (DN) which is incorporated in a synapse or a Node of Ranvier.  Parametric output is shown as used in patch-
clamp experiments.  Traces are labeled with subscripts indicating the reverse saturation current, I0.  See Text.
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primary mechanism associated with the adaptation process and with the phenomenon known as bleaching.

The significance of a change in the effective absorption cross section is obvious if the product σeff@F is considered.  
As the average stimulus level increases prior to the impulse stimulus, the effective absorption cross section is
reduced.  As a result, the apparent sensitivity of the sensory neuron is reduced.  In practice, the system is designed
to maintain a constant small signal amplitude at the pedicle of the sensory neurons with the effective absorption
cross section inversely proportional to the average background stimulus level, Fback.  Within the color constancy
range of the overall system, the product,  σeff@ΔF, where ΔF is a change from the background level, Fback, remains
essentially constant. 

The average number of chromophore molecules per sensory neuron outer segment is very large, 4@1010 (Sec.
4.3.5.3.5).  Reducing the number of available chromophores by a factor of 105 due to a high background stimulus
exciting only one electron per chromophore would still leave 4@105 chromophores available per sensory neuron. 
The effective absorption cross section (expressed as an area) would be reduced by a factor of 105.  Alternately, the
optical density of the outer segment could be described as reduced (bleached) by 5 optical density units.  While still
highly sensitive, a retina of these cells it would appear totally bleached to the clinician.

A.2.3.5 Characteristics of the solution

The P/D Equation exhibits a variety of unique characteristics that relate to the observed operation of the visual
system.  The most important is the first derivative of the equation.  

A.2.3.5.1 The intrinsic time delay

The first derivative of the imaginary part of the equation with respect to time is zero.  However, the first derivative
with respect to intensity describes the rate of change in the intrinsic delay with stimulus level.

dθ/dt =  d(+kdAkTA(1/F)1/6Ae-T/8)/dt = (1/6)@(F)5/6@e -T/8 Eq. A.2.3-5

The rate of change varies with the 5/6th power of the intensity.  The rate also depends on the temperature of the
subject.

A.2.3.5.2 The slopes of the response

The first derivative of the real part of the equation describes the slope of the function with respect to time.  Looking
only at the amplitude response, the derivative is,

Eq. A.2.3-6R t F e t eeff
F t

eff
teff eff' /( ) (( / ) )= − ⋅ ⋅ + ⋅− ⋅ ⋅ −σ τσ τ

Note that for time equal zero, the value of R’(t) is -σeff@F.  This function says the curve is negative going with a
slope proportional to the intensity of the stimulus.  This variation with respect to intensity is the source of attempts
to use a variable number of simple RC filters in a model of the P/D mechanism..  Each investigator picks a Class C
or Class D waveform generated by a specific intensity stimulus and attempts to match that waveform with an
equivalent multistage RC filter.  The number of stages generally varies from 2 to about 10 depending on the time
constant chosen for each filter section.  Most authors have attempted to use only a single time constant.  Others
have arbitrarily chosen different time constants for different sections.  The emulation is vaporous.  There is no
other theoretical basis for such a multistage emulation.

By setting the value of R’(t) equal to zero and solving for the time, The precise time of the peak of the waveform
can be determined.

The slope of the leading edge of the amplitude response varies continuously with time.  However, if the value of
σ@F is large enough compared to τ, the contribution of the decay term is very small and the slope approaches a
straight line.  This is clearly seen in the typical family of Class C or Class D waveforms.  The slope of the response
in the area where it is nearly straight continues to increase as σ@F increases.  However, the test instrumentation
frequently fails to record this.  This is usually found where the bandwidth of the test set is less than 1000 Hertz.

The slope of the trailing edge of the Class C waveform is also given by the above equation.  Here again, if σ@F is
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large enough compared to τ, the effect of the term containing σ@F becomes negligible quickly.  The resulting slope
of the trailing edge closely approximates the function exp(-t/τeff).  This is seen in Figure A.2.3-1 for σ@F = 6000. 
The time constant of the trailing edge can be read from the time scale as 12.5 ms (at the 37% amplitude point).

A.2.3.5.3 The characteristics for the degenerate condition

The amplitude response for the degenerate condition, where σ@F@τ = 1.00,  is represented by the equation,

R(t) = (t/τ)@exp(-t/τ)

The first derivative of this function with respect to time is, 

R’(t) = (1/τ)@exp(-t/τ)-(-t/τ)2@exp(-t/τ) Eq. A.2.3-7

At time zero, the slope of this function is simply equal to 1/τ.  The time of the peak in the function can be
determined by setting R’(t) equal to zero and solving for the time, t.

The Hodgkin solution (Poisson’s Equation of the second order)  is unique.  The degenerate condition is particularly
useful because the function and its derivatives only contain the variable, t, and the time constant, τ.  There is no
term containing the intensity, F.  However, the product of σ@F is equal to be the reciprocal of τ, due to the initial
condition.  Thus, if an actual measured response can be found that can be overlaid precisely by the degenerate
function, a precise value for the decay time constant of the specimen can be determined.  Simultaneously, a precise
relationship is determined between the product of the intensity and the absorption cross section, σ@F and the
applied stimulus in engineering units.

A.2.4  Simplified cases of the general P/D equation

As indicated earlier, it is possible to simplify the complete P/D equation in a number of ways in order to compare
the equation to the data collected previously and reported in the literature or to be collected subsequently.

Furthermore, since the P/D equation is the impulse response of the P/D process, it can be used to compute the
response of the phototransduction process to any arbitrary input stimulus.

A.2.4.1  The impulse solution for a fixed temperature situation

For those investigators dealing with live warm blooded subjects, the temperature of the photoreceptors is basically
controlled by the subject to within a very narrow range, unless disease is present. Alternately, all of the
experiments in a given series may carried out at a fixed temperature.   It is therefore useful to have a simpler form
of the P/D Equation for this situation.

This is easily done by letting KT = e –T/8  for T in degrees Celsius.

For humans at 37 degrees,  KT =  0.01.  

Note the high sensitivity to change in this function, a one degree change causes a +10% or -14% change in KT.  In
general, the temperature should be measured and recorded to about 0.1 degree Celsius during experiments.

A.2.4.2 “Bleaching” as an observable

Bleaching is one of the oldest observable phenomenon associated with vision.  However, its precise cause and
numeric description are difficult to locate in the literature. Bleaching is the reduction in the opacity of the retina
and is a direct result of the excitation of the chromophores of vision at a higher rate than they are de-excited by the
neural system.  Bleaching occurs on a spectral channel selective basis.  It can be a major problem in the research
laboratory where a “dim red light” selectively bleaches the L-channel chromophores.  In the clinic, the normal
magenta appearance of the retina by reflected light is difficult to distinguish from the reddish color of other tissue
due to the presence of blood.

The terms bleaching and self-screening should be compared.  In a sense they are contradictory.  The term, to
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34Burns, S.  Elsner, A.  (1985) Color matching at high illuminances: the color-match-area effect and photopigment
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bleach, implies a photon-excited material becomes less opaque at a specific wavelength or over a range of
wavelengths.  The term self-screening, on the other hand, suggests that a photon-excited material is no longer
excitable but remains an opague screen in front of material behind it in the optical path.  The latter concept has
been described recently by Burns & Elsner via a tortuous path34.   Their analysis is based on the Beer-Lambert Law
and earlier work in physical chemistry of passive opaque material in a dilute solution.  To achieve their desired
results, it appears they have assumed the different photoreceptor layers are formed in individual sheets so that the
M-channel photoreceptors somehow screen the L-channel photoreceptors behind them (as in photographic film). 
This is not a rational description of the retina where the individual photoreceptors all lie with their acceptance
apertures in a common focal plane and all are exposed directly to the incoming light.  It should also be noted that
their equal-quantum-match condition is not an appropriate condition for defining metamers (see Section 17.3).

The term bleaching is compatible with the theory of this work.  The term self-screening is not compatible with the
theory and should be abandoned.

Equation A.2.2-1 can be rewritten to describe the absorption potential of the chromophores of vision within the
configuration of the retina under two significantly different conditions.   In the fully operational condition, the
level of absorption of the chromophores will be reduced during continual irradiation as a function of the size of the
available pool of n-electrons. While the size of the pool may be fixed, electrons are continually leaving and
returning to the pool in a dynamic process.  Because the materials absorptivity is reduced, the material can be
considered partially bleached.  If however, the neural portion of the photoreceptor cell becomes non-operational,
the de-excitation phase of the overall process will not occur.  The excited electrons of a Rhodonine in a liquid
crystalline configuration does not fluoresce and is thermally stable.  In the absence of in-vivo de-excitation, the
chromophores will continue to absorb photons until the n-electron pool is exhausted.  The material can be
considered bleached to its ultimate value.

Each photoreceptor is exposed to the full intensity of the stimulus.  The question is what happens to the photon
sensitive material as it is excited by photons?  The quantum-mechanical model of [Figure A.1.1-2] can be
expanded as shown in Section 5.4.3.  In the formation of a liquid crystal, the absorption band associated with a
single molecule is broadened in order to satisfy the Pauly Exclusion Principle of quantum-mechanics.  The degree
of broadening is directly associated with the diameter of the disks of the outer segment of the photoreceptors.  The
result is that a photon with an energy equal to the difference-in-energy between any two levels within the (shaded)
ground state and π* energy state has a high probability of being absorbed by a single disk of the outer segment.  In
progressing down the length of about 2000 disks, there is a very high probability (~100%) that it will be absorbed
by the chromophore and an electron will be transferred from the ground state to the π* energy band. 

In the context of the liquid crystal, the concept of bleaching is quite clear.  The degree of bleaching is indicated by
the number of excited electrons at any given time compared to the total number of un-shared ground-state electrons
prior to photon excitation.  This ratio can be considered a per cent bleaching.  However, because of the logarithmic
character of vision, it is better to describe this ratio as an equivalent density change given by the formula:

A.2.4-1Bleaching
n q
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0
where n0 is the total number of unshared ground-state electrons and q is the number of excited electrons at any
given time.  The formula works for both absolute numbers and for percentage numbers.  When 90% of the
available unshared electrons are excited, the bleaching level is -1.0 log units.  When the excitation level reaches
99%, the bleaching level is -2.0 log units, etc.

The bleaching level computation is a function of the time delay experienced by the excited electrons in moving to
their point of de-excitation.  This time delay is a function of the original photon intensity, and the ability of the
adaptation amplifier to de-excite the excited electrons, as shown earlier.  In general, the bleaching level changes
rapidly by small amounts under in-vivo operating conditions.  While a level of bleaching might achieve -3.0 log
units momentarily, the adaptation amplifier will operate continually to de-excite the chromophoric material in
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order to bring the operating point of the adaptation amplifier output to near its quiescent value for the incident
light level.  While at the -3.0 or higher log unit level, the particular outer segment is virtually transparent and any
in-band photon energy applied to the cell will pass completely through the cell and impinge on the RPE behind the
outer segment.  Any out-of-band photon energy will routinely pass through the photoreceptor outer segment and
impinge on the RPE. 

The above leads to the interesting question, “what is the intrinsic in-band optical density of the outer segment of a
photoreceptor when dark adapted?   Each outer segment consists of about 2,000 disks stacked axially.  Each disk is
stimulated sequentially by a photon impinging axially on the outer segment, until that photon is absorbed.  Since
each disk is highly sensitive to any photon with the appropriate in-band wavelength, it is highly likely to be
absorbed before reaching the end of the outer segment.  An expected absorption of over 99% would not be out of
the question.  At this level, the outer segment, in-toto, exhibits an optical density of 2.0 log units.  If an
ophthalmologist could observe the retina without disturbing its state of maximum total dark adaptation, the retina
would appear black over the spectral band of about 400 to 650 nm.  

A.3 The long Pulse solution of the P/D Equation

Investigators frequently use two stimulus waveforms that do not represent impulse functions.  However, once the
impulse response of the transduction process and the performance of the neural portion of the photoreceptor neuron
is known, the response to these stimuli can be predicted.  The first stimuli is the infinitely long step change in the
stimulus amplitude at time zero.  The second stimuli, of equal importance but resulting in more complex
mathematics, is the finite duration step or square pulse beginning at time zero.

A.3.1 The response of the P/D Equation to a step

The complete solution of the P/D Equation is known as the inhomogeneous solution to the first order differential
equation.  The forcing function, qf, does not equal zero after time zero and it may change with time.  The
mathematics of this solution will not be presented here due to its unwieldy nature.  Any text on differential
equations can provide this solution.  The major feature of the solution is that the function settles to a different final
value than the starting value prior to time zero.

Figure A.3.1-1 shows the major characteristics of the complete P/D response to a rectangular step.  Note the only
parameter changed among these traces is the relative amplitude of the step, given by the parameter Q1,  y=0 is the
impulse response of the transduction process (as developed in the previous discussion). The other values of y relate
to the relative amplitude of Q1.  The change in the time of peak response is due totally to the relative differences in
amplitude between the forced term in the response and the transient term in the response.   Similrly, the attack
time constant varies because of the relative significance of the individual terms in the overall equation.  The traces
show how difficult it is to estimate the attack and decay time constants in the absence of a theoretical description of
the underlying mechanism.  As noted, the delay in the response shown is based on the parameters of visual
transduction at 37 Celsius.  The delay may vary in other modalities.  However, the data is limited for these other
modalities.
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A.3.2 The response of the P/D Equation to a rectangular pulse EXPAND

The overall response of the P/D equation to a rectangular pulse is the same as for the step until the termination of
the pulse occurs.  At that point, the state of the process changes abruptly.  Photo-excitation no longer plays a role. 
The solution following cessation of the stimulus (and the appropriate transport delay) is known as the
homogeneous solution to the first order differential equation.  The forcing function, qf, is equal zero.

Figure A.3.2-1 shows the major characteristics of the complete P/D response to a rectangular step.  Note the only
parameter changed among these traces is the relative amplitude of the step, given by the parameter Q1, The
response labeled y=0 is the impulse response of the transduction process (as developed in the previous discussion).
The other values of y relate to the relative amplitude of Q1.

Figure A.3.1-1 Complete P/D Equation in response to a step.  The attack and decay time constants are the same for
all of these responses.  The stimulation is shown at the bottom, except for the impulse (bottom) response.  The step
defines the start of the stimulation.  See text.
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Neither the rising portion or the settling portion (to the left of the right-most dashed line) of the P/D equation in
response to a rectangular pulse is a simple exponential.  The attack portion and the settling portion represent the
difference between two exponentials resulting from the solution of a inhomogeneous differential equation.  Only
the decay portion to the right of the second dashed line is a simple exponential resulting the solution of a
homogeneous differential equation..  

The attack delay, Ta, is due to the combination of the initial drift velocity of the excited electrons and the average
distance traveled by those electrons within the excitation band of the liquid crystalline stimulus binding complex
(SBC).  This initial drift velocity occurs in the absence of any space charge effect within the excitation band.

A stimulus binding complex (SBC) is the modern name for an odor binding protein (ODP).  It is typically a
metallic complex containing multiple short peptides.  While technically very simple proteins, the role of the
peptides is to provide a stereo-specific structure to the complex.  The fact the metallic element is present as
a coordinate chemistry “complex” plays a more important role than do the peptides, and justifies the more
explicit name.

The decay delay, Td, following the termination of the stimulation but before the beginning of the decay exponential
is due to the average drift velocity of the excited electrons and the is due to the average distance traveled by those
electrons within the excitation band of the liquid crystalline SBC.  This average drift velocity occurs in the
presence of a space charge effect within the excitation band.

A.4 Comparisons of the P/D equation and the experimental literature

The P/D equation defined her can be shown to apply to all of the major sensory modalities of the neural system,
specifically, vision, hearing and smell.

Juusola, et. al. provided a wide selection of sensory neuron response data for the blowfly, Calliphora vicina, during

Figure A.3.2-1 The overall response of the P/D equation to a rectangular stimulus.  The attack and decay time
constants are the same for all of these responses.  The stimulation is shown at the bottom, except for the impulse
(bottom, y=0) response.  The rectangular stimulation is defined by the lower line.  The beginning of the post
stimulation waveforms is delayed according to the intensity of the stimulation at its termination.  See text.
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the 1993-1996 time period35 and extending into 2005 with Drosophila.  Both impulse and pulse (typically
rectangular pulse) stimulation was employed.  The data shows a close parallel to the data of mammals even though
it was acquired from a histologically different sensory configuration.  Juusola et al. did not offer any
comprehensive model upon which to base their discussions.  In spite of a few anachronistic statements because of
this lack, they did report many of the major relationships of interest here.  For example they note, “The definition
of dead time, or so-called pure time delay, includes that it does not affect the gain part of the frequency response36.” 
Neither does it affect the shape of the temporal response.  It only introduces a pure delay.  They did not report that
the delay is a function of the stimulus amplitude.  Their 1996 paper provides considerable data on the synapse
between graded potential cells.  However, their model is limited to a histological caricature37.  Their use of contrast
as a primary parameter rather than stimulations following a dark period makes their data more difficult to
interpret.  Their stimulant must generally be considered a serial change between two steady states (although their
data obscures this fact in the way it is plotted (1993, page 513).  In the same paper, they have difficulty describing
the movement of putative ions through the plasmalemma, such as defining both inward- and outward-going
potassium components.   Their data will be addressed below in the appropriate sub-sections.

There is a complication hinted at above.  If the length of the stimulus is longer than an impulse but shorter than the
decay time constant of the mechanism under test, the mathematical description of the response can be quite
complicated.  For impulses or pulses longer than the decay time constant of the mechanism, this problem
disappears.

A.4.1 Comparisons with other impulse literature of vision

Chapter 12 provides a detailed circuit diagram of the visual sensory neuron and defines a set of waveforms that
can be measured by probing different areas of the neuron or the surrounding area.  The literature contains
measured data corresponding to both the Class C and Class D waveforms under impulse conditions.  The majority
of the data consists of voltages measured with respect to the pedicles of the photoreceptor cells (Class D
waveforms).  Some data is available on the current through only a single adaptation amplifier (Class C
waveforms).  This section will reproduce these data sets with an overlay of the expected performance based on the
P/D Equation (and other circuit parameters as required).
 
A.4.1.1 The Class C waveforms of transduction

Palacios, et. al. have recently presented Class C waveform current data for several amphibians using the
micropipette based Faraday cage approach38.  They used transverse illumination at an unspecified temperature to
evaluate “red rods.”  This information can be translated into, they measured the isotropic spectral and transient
response of mid wavelength chromophores of vision at 497 nm.  Much of their data shows serious saturation in the
waveforms leading them to assume the Michaelis approach, used by others to explain their results.  The Michaelis
equation is also known as the logistic equation. It plays no role in the theory of operation of the photoreceptor cell. 
By looking at their data for exposures less than the saturation level, the characteristic P/D Equation response is
easily recognized.  Lacking precise temperature data, it may not be productive to attempt to exploit this data
completely.    Their data for Rana pipiens saturated at 13 pA.  Their data for Ambystoma tigrinum saturated at 32
pA.

A.4.1.2  The Class D generator waveforms

The class D generator waveforms can be measured directly by probe techniques.  However, these have not been
possible in the past on human subjects.  Only ERG records are available on humans.  The investigators typically
employ Ganzfeld illumination to obtain these ERGs.  As indicated in Section 16.7.2, this techniques integrates the
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Figure A.4.2-1 P/D response and the class D generator
waveform of the zebrafish following long pulse
stimulation.  No Activa saturation is evident in these
waveforms.   Measured waveform is an LERG based on
500 nm light at a tank temperature probably between 28-
30 Celsius.  Data from Saszik & Bilotta, 1999.

signals from a very large number of cells located at various distances from the signal pickup point.  This results in
measurable smearing of the waveforms with time as the individual signals are summed.  However, remarkably
useful information is still obtainable.

A.4.1.2.1 Measurements by probe techniques

There appears to be an error in drafting in Figure 1 of Baylor, Nunn & Schnapf39 and as it was transcribed and
modified in the Figure 8(c) of Pugh & Lamb40.  Alternately, they had a failure in the warming equipment of their
test set.  The intrinsic delay suggested by the location of the impulse symbol is about 30 msec ostensibly at a
temperature of 36 Celsius in-vitro.  This would be the expected delay of a cold-blooded animal at 20 Celsius (room
temperature) or less.  The rise times are also suggestive of this temperature range. 

 Figure A.4.2-1 provides a good comparison of the theoretical P/D Equation under square pulse conditions
(excitation only marginally shorter than the time to peak response).  It was obtained by Saszik & Bilotta using the
zebrafish.  Although the investigators labeled the data curves as representing the b-waves of ERG’s, it appears the
more standard notation would be the a-waves of an LERG.   The data was taken with narrowband spectral light at
500 nm under typical laboratory temperature control (apparently controlled by the room thermostat).  The nearly
equal amplitude spacing between the waveforms suggests small signal conditions during the tests.  The scale on the
right was calculated based on the values given by the investigators.  The intrinsic delay and time constants of the
waveforms are consistent with P/D Equation of this work.

The intrinsic delay associated with the -4.0 log stimulus was about 64 ms (although their appears to be an initial
undershoot associated with the filters used in the test set).  Similarly, the -6.0 log stimulus showed an intrinsic
delay of 145 ms.  Note that only the first waveform reached a peak before the end of the square wave stimulus on
an absolute time basis.  When considering the intrinsic delays, the first three waveforms reached their peaks before
the end of the stimulus.  The -7.0 log stimulus curve is too noisy to determine its intrinsic delay from the data. 
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Figure A.4.2-2 Comparison of P/D Equation to the Class
D waveforms of a turtle photoreceptor cell.  Temperature
was 20° C.  Radiation was 514 nm.  Flash duration, 20
msec.  Data set from Copenhagen & Owen, 1976.

Figure A.4.2-3 Comparison of the P/D Equation to the
Class D waveforms of two turtle photoreceptor cells.
Upper curve, 0.5 photons/μ2 at 520 nm.  Lower curve, 4.0
photons/μ2 at 650 nm.  The data from the two cell types
are fit by the same equation when the difference in
intensity is recognized.  Data set from Copenhagen,
Ashmore & Schnapf, 1983.

Figure A.4.2-3 shows how well the data of
Copenhagen & Owen follows the expected P/D
response of the snapping turtle41.  They used DC
coupling in their test set.  This largely eliminated the
second order curvature in the data waveforms prior to
the leading edge of each curve.  However, this fact is
obscured by the phosphor broadening of the
oscilloscope prior to the expiration of the intrinsic
delay, δ(F,T).  The specific direction of the incident
illumination was not specified but it appears to be
axially aligned with the outer segment.  They used
relatively low intensity stimuli and generated a
maximum voltage change at the pedicle of only 29
mV.  No saturation is apparent in the resulting
response.  They recorded pedicle voltages rather than
currents. Those authors were unable to account for the
shape of their response functions, relative to the
simplified form of the P/D equation used by Hodgkin. 
They therefore introduced the term “overshoot” to
account for the higher peaks in the data.  This term is
not needed when the complete P/D Equation is used. 
The P/D Equation fits this curve properly along with
the rest of the curves.  However, the curves do not
appear to be returning to the nominal zero level as expected for an impulse stimulus.  The presence of this offset
when recording the signals with a DC coupled test set may represent the change in the quiescent voltage of the
pedicle.  This change could be associated with a much longer time constant.  (see Section A.2.3.1) 

Figure A.4.2-3 performs a similar matching to figures 6 & 7 of Copenhagen, Ashmore & Schnapf for the snapping
turtle, Chelydra serpentina42.  Although those authors ascribed the difference in the time and rate of response to
the difference between “rods” and “cones,” it is clearly
a function of the light level used.   The same P/D
Equation fits both waveforms when the appropriate
stimulus intensity is introduced.

They relied upon the depths of their probes to
determne the type of cell they had encountered and
recorded.  This technique does not allow an
unequivocal separattion of bipolar and horizontal
cells.

Their data is difficult to interpret.  In some cases, their
responses at the horizontal cells precedes the
responses at the pedicles of the sensory cells.  Their
amplitude scales are given in millivolts per photon per
μm2 per flash.  The results using this nomenclature
suggests a very high degree of circuit linearity versus
stimulus intensity or very small changes in stimulus
intensity.  
 
Note that the P/D equation predicts the systematic
shift in the time corresponding to peak amplitude of
the traces with higher flux level.  This shift does not
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correspond to any change in a time constant; it is merely a manifestation of the intersecting of two exponential
functions with different arguments, one increasing and one decreasing.

It is clear from the discussion in Baylor’s paper that the noise level encountered in the testing was significant.  It
was primarily due to the finite number of photons being detected by a single photoreceptor during an individual
test sequence.  Because of this factor, it is not possible to say how much lower a signal level could have been and
still been sensed by the neuron.  However, two things become clear, the turtle photoreceptor tested is photon noise
limited and the neural portion of the photoreceptor has a linear dynamic range of at least 1.9/0.032 or 60:1 before
saturation becomes a factor in linearity.  Its maximum usable dynamic range appears to be about 7.8/0.032 or about
200:1.  These would be reasonable values for a human eye, which only encounters dynamic ranges greater than
25:1 under specular or man made conditions (looking at the sun directly excepted); they are probably reasonable
values for the turtle eye.

Cideciyan & Jacobson developed a new model following the earlier work of Lamb to account for the failure of the
Lamb model to fit a series of ERG waveforms obtained at high stimulus levels.  Their results
 are of little consequence since they also ignore the actual shape of the complete P/D response.   They used an AC
coupled 4-pole filter in their test set.  The filter appears to have limited the rise time of their waveforms at the
highest stimulus level and may have limited their data near the toe of the waveforms.  Of greater concern is the
data manipulation they performed to isolate a putative “rod isolated ERG.”  They did recognize the possibility of a
distinct time delay.  However, they treated it as an additional time constant.  As a result, they introduced it as a
convolution with respect to their theoretical response function.  In the P/D Equation, the delay is not considered to
be in the form of a time constant.  The delay and amplitude response are recognized as entirely independent.  This
allows them to be multiplied together in the time domain (See Sections A.1.1.3 & A.2). 

A.4.2 Comparisons with the Salamander Olfaction literature

The Zufall, Leinders-Zufall team provided a very comprehensive set of in-vitro C/D (P/D of smell) data for the
salamander, Ambystoma tigrinum, during the 1996-2000 time period.  It can be assumed the data was collected at
about 23 Celsius although no specific value could be found in their reports.  The 1998 Leinders-Zufall, Greet et al.
paper provides data when individual microtubules (cilia in their nomenclature) of the olfactory receptor neuron
(ORN) are stimulated43.  The 1999 paper of Leinders-Zufall et al. provides the most complete data set44.  In-vitro
experiments involve disturbing the matrix supporting the outer segment of the chemoreceptors, both physically and
chemically.  This can result in the loss of nutrients and/or problems clearing transduction reaction products.

The following analysis of their paper does not follow their analysis.  In particular, this discussion will associate the
C/D data with the quantum-mechanical events occurring on the surface of the microtubules (cilia) of the
chemoreceptor cell and including the electrolytic transport of charge through the plasmalemma of those
microtubules as part of Activa operation.  This analysis avoids the contradictory findings related to Ca2+ transport
in that paper relative to their hypotheses and the work of previous investigators that they reference.  This analysis
also makes a clear distinction between the impulse responses they associate with a “short odor pulse” and the long
pulse response they label a “long odor pulse.”  The later includes both the inhomogeneous and homogeneous
solutions to the C/D equation.  The response to the short odor pulse involves only the impulse response solution to
the inhomogeneous solution.

As the reader will note, the predicted waveforms and measured data converge within the expected experimental 
error and graphic arts tolerances.

The definition of short and long pulses in the empirical environment is left to the experimentalist
unfortunately.  In this work, a short pulse (an impulse) stimulus always lasts considerably less time than the
time to reach the peak in the response to the stimulus.  Conversely, a long pulse is always much longer than
the time for the response to reach its peak. 

Figure A.4.2-4 shows their data (figure 2) for both the rectangular pulse (frames A-C) and impulse (frames D-F)
for a dissociated adult salamander chemoreceptor from the nasal epithelium, labeled an olfactory receptor neuron
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or ORN in their paper.  

Leinders-Zufall et al. placed the label “Normal” in an unusual place at the top of their graphic. The goal of
this is not clear.  The waveforms clearly are not those of a normal in-vivo olfactory neuron.  They may be
those of a typical in-vitro olfactory neuron but this is not clear.    The waveforms in frames A & D both
exhibit the characteristics of a neuron suffering from excessive impedance in the collector (axoplasm)
circuit.  The impedance exhibits a time constant of 27.7 seconds, longer than any associated with the
internal circuits of a neuron.  These characteristics suggest the electrolytic power supply to the neuron was
not performing normally.  Such poor performance is usually associated with inadequate availability of
glutamic acid (or the inadequate removal of GABA).  Their Ringer’s solution did not contain any glutamic
acid (or its metabatropic alternate, aspartic acid).  Two question marks have been added to their header to
highlight this difference in interpretation.

Their experiments employed the voltage patch-clamp technique with a holding potential of –60 mV.  All of their
measurements are currents related to the axoplasm of the cell (the output current of the distribution Activa within
the cell).  No logarithmic conversion of the current to a voltage is involved in these experiments.  The stimulant
was a 50 μM solution of cineole applied to the in-vitro neuron by a puffer pipette.

As noted in the development of the C/D equation, the height of the peak in the response, and the time to reach that
peak are not primary parameters in the waveform.  Furthermore, the time constant of the initial decrease in
response to the steady-state value, labeled τdes in the paper, is not a primary parameter.  These parameters vary in
complex ways depending on the primary parameters, the stimulant intensity, the absorption cross section of the
SBC(s) and the temperature of the experiment.  The decay time constant, labeled τterm in the paper, is an
independent parameter of the cell and the temperature.  The value of τdes varied by over a factor of eight due to a
variation in 100:1 in odor concentration (their figure 1B).   Unfortunately, they chose to limit their range of
stimulant concentration to 50-100 μM because of a misinterpretation of the significance of this relationship.

The use of normalized responses is a particular problem in their figures as it obscures the true relationships
between the waveforms, particularly the slope associated with their initial time constant, τattack, that is not labeled in
their data.  In the absence of scaling, this parameter is proportional to the product of the stimulant intensity and the
initial absorption cross section, σCF.  While the value of F can be considered constant during the stimulant interval,
the absorption cross section decreases significantly due to the limited number of unexcited electrons available
within the lattice of the (proposed) liquid crystalline SBC following the leading edge of the stimulation.
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Only figures 1C, 1E, 2A and 2D provide absolute current values for their recorded waveforms.

Frame B of figure 2 shows the initial response to two long pulse stimulations.  By extending the slope of the initial
responses to the point where they cross the baseline, an accurate measurement of the initial delay, Ta, can be
obtained.  For the long pulse at 50 μM concentration, the initial delay of the response labeled “control” is given as
0.349 sec at a temperature of 23 Celsius by the C/D equation.  By scaling the figure (note the stimulation does not
begin at time zero), a value of 0.333 sec is obtained.  This is well within the tolerance of the unspecified but
assumed experiment temperature.  A theoretical temperature of 23.4 Celsius would give precisely 0.333 sec. 

Their data shows the decay time constant, τterm, of the cells tested converge on 0.24 seconds.  This value should not
be confused with the short value of  τdes in the right-most response of figure 1A.  The value of τdes has been
mislabeled τterm in this impulse response.  The impulse response of a neuron does not exhibit a steady-state value
following stimulation or a termination time constant, τterm.

Figure A.4.2-4 Detailed impulse and long pulse responses from the salamander chemoreceptors.  The currents
result from a voltage patch-clamp configuration with a holding potential of –60 mV.  The stimulus was a 50 μM
cineole stimulant applied directly to the neuron from a puffer pipette.  From Leinders-Zufall, et al., 1999.
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The responses for the impulse experiment also varied considerably.  The normalizing process masks the fact the
amplitude and the slopes of the second pulse were actually 5.3:1 lower than in the first pulse.

The impulse response data for individual stimulus pulses in frames D-F of figure 2 follow the theoretical C/D (P/D)
equation developed above and will not be analyzed further here.

Their series of papers provide considerably more data than are addressed here.  However, it is noted that the
deterministic explanation of the mechanism underlying the P/D equation developed within the Electrolytic Theory
of the Neuron eliminates any need to discuss Ca2+ transport through the neuron membrane and any first and second
chemical messengers within the neuron.

A.4.2.1 The C/D response to a rectangular pulse

The failure of the response to a second pulse to achieve a similar amplitude to the first pulse after an extended
period (Leinders-Zufall et al., figures 1A, 1C & 1D and figure 2) may be due to a variety of mechanisms unrelated
to transduction.  It may involve a failure to clear the residue of the cineole following transduction or the
replacement of any SBC consumed during transduction.  The literature has not yet defined exactly how cineole
excites the SBC’s and the energy (or charge) is transferred to the microtubules of the neuron.  A more likely
problem is available from the Electrolytic Theory of the Neuron.  The long time constant of the recovery process,
nominally 27.7 sec from figure 1D, suggests it is related to the operation of the collector power supply supporting
the initial Activa within the neuron.  This circuit typically exhibits a time constant of a few milliseconds. 
However, if the neuron is operated in-vitro without an adequate supply of glutamic acid, or without the ability to
clear GABA from the neuron’s surface, the rapid falloff in the response during a long odor pulse would be
expected.  The collector of the Activa would be provided its normal quiescent potential through a high impedance
circuit with a long time constant.  As a result, the free electrons induced in the base region of the Activa would not
be swept out of the base in a timely manner.  This would cause a backup of excited electrons in the excitation band
of the SBC and a decrease in the available number of excitable ground state electrons.  The result would be a very
rapid decrease in the absorption cross section of the transduction process reflecting the time constant of the
collector power supply..

Figure A.4.2-5 shows the theoretical C/D equation overlaying the measured value from figure 2A of Leinders et al. 
The values F=50, σ@F= 60, t=0.18 sec, Td=0.285 sec and T=23.4 Celsius were used in the C/D equation along with
other parameters developed from the visual P/D equation.  y was taken as 0.01 (1% of the initial σ@F value).  The
fit can be made arbitrarily good.  However, scaling from the original published art has its limitations.  A higher
temperature in the C/D equation would result in a better match.  No attempt has been made to show the terminal
delay and the decay characteristic beyond the termination of the eight sec. stimulation.

The numeric F=50 in this figure corresponds to the 50
μM concentration of the stimulant cineole.  As noted
earlier, neither the rising (leading edge) portion of the
response or the settling portion is represented by a
simple exponential.  The rising portion approaches a
straight line as the value of s@F rises.  The settling
portion is more difficult to describe except as the
algebraic difference between two exponentials.  Only
one neuron was used to obtain the measured response. 
The dashed theoretical response can be considered the
template against which the measured response should
be compared.  The separation between the measured
data and the template during settling may be due to
the inappropriate choice of temperature and decay
time constants. 

The low steady state value given by Leinders-Zufall et
al. as 1/110 of the initial peak height has been
replicated here using y=0.01.  Further refinement of this value is not warranted based on the published graphical
data available.  τ=0.18 sec was used to achieve the best fit, instead of the value of 0.29 sec quoted by Leinders-
Zufall et al.  This is a very difficult measurement to make for y=0.01.  The theoretical temperature of 23.4 Celsius
has also been chosen to obtain the best fit, in the absence of any data from Leinders-Zufall et al.

Figure A.4.2-5 Theoretical C/D equation overlaying the
long odor pulse from Figure 2A of Leinders-Zuffal et al. 
See text.  From Leinders-Zuffal et al., 1999.
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The very low steady-state plateau in this figure is not typical of normal chemoreceptor neurons.  The responses
frequently exhibit relatively high steady-state (plateau) values as shown for the olfactory neurons of salamander
responding to cineole in Hamilton & Kauer45, the recent papers of Wachowiak on the olfactory bulb of mice46, and
in Pfaffmann et al47. for the gustatory neurons.  Many other sources could be cited.  It is suggested the
electrical power to the neurons under test may have been exhausted.  No data was presented showing the original
waveform amplitude was obtained on a third pulse following washout of the stimulant.

Figure A.4.2-6 reproduces part of figure 3A from Leinders-Zufall et al.  It shows a more distinct steady-state
plateau under the same nominal conditions.  In this case, the neuron had been marinated in 1 μM concentration of
autocamtide-2-related inhibitory peptide (AIP) for 15-20 minutes.  The theoretical C/D equation overlaying this
response had F=50, T=20 Celsius, t=0.24 sec and y =0.8.  The calculated attack delay, Ta=0.27 sec, relied upon
other P/D equation parameters based on the visual P/D equation.  The decay delay, Td=0.7, was scaled from the
measured data.  The calculated decay characteristic, with τ=0.24 sec,  following the decay delay overlays the
measured decay within the limit of the artwork.  The predicted and measured values only differ in the middle of the
decent to the steady-state region.  This region is described as the desensitization (or adaptation) region in the
Zufall team papers.  In this work it would be associated with a quantum-mechanical mechanism associated with
the initial transduction (Section A.2.3) and not to any chemical mechanism associated with the soma of the
neuron.  The overall measured waveform looks very typical of an olfactory neuron response in spite of the presence
of AIP.

A.4.2.2 Longer term adaptation for spaced
rectangular pulses

Figure 1 in the Leinders-Zufall et al. paper presents
additional data related to the recovery of sensitivity in
a single neuron in-vitro.  The reader is cautioned that
the response labeled “control” in frame F of that figure
appears to be the result of a short odor pulse.  If so, it
does not relate directly to the response to a long
stimulation by n-amyl acetate shown.  This figure fails
to recognize the fundamental difference between the
impulse response generated by a stimulant pulse
considerably shorter that the initial rise time and the
response generated by a long pulse stimulant lasting
much longer than the initial rise time. A correct
comparison would be to a waveform of the type shown

by the dashed line in the above figure (using the appropriate value of y.

Zufall & Leinders-Zufall also used the label “control” in their figure 3 of a subsequent review paper48.  While the
control waveform, based on y<0.01, is correct, a better comparison might be to use a waveform such as shown in
[Figure A.4.2.3] with a value of y in the range of 0.7 to 0.9.  Their review lists a variety of experiments carried out
to evaluate the effect of various pharmaceuticals on sensory neuron response within the largely conceptual
chemical theory of the neuron.  The assumption is they act as “second messengers” and introduce a feedback
mechanism.  However, their list does not include any quantum-mechanical mechanisms that might have the same
effect.  The Electrolytic Theory of the Neuron employs such a quantum-mechanical mechanism as described in
Section A.2.

Figure A.4.2-6 C/D equation overlaying a long pulse
response with steady state plateau.  See text.  From
Leinders-Zufall et al., 1999.
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The data in figure 1C and 1D describes the long term recovery of the neuron effectively and presents an average
long term recovery time constant of 27.7 seconds for a group of ten neurons of the Salamander.  The underlying
mechanism supporting this long term adaptation is not described here.

As Leinders-Zufall et al. noted in connection with their figure 2A, the amplitude and shape of the response to a
second pulse in a series varied considerably from the initial response for the long pulse stimulation.  The
normalization used in their figure 2B masks the true magnitude of this variation for the long pulse situation.  The
amplitude difference was 14:1 and the slopes were also 14:1 lower than in the first pulse.   Such variations in
slopes are obscured in frame 2B.  Normalization problems are also obvious in their figure 3.  The relative
amplitudes of the recorded responses to impulses pulses are quite large but when normalized, these differences
obscure the differences in the slopes of the waveforms.
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