The NEURONS and NEURAL SYSTEM: a 21st CENTURY PARADIGM

This material is excerpted from the full β-version of the text. The final printed version will be more concise due to further editing and economical constraints.

A Table of Contents and an index are located at the end of this paper.

A few citations have yet to be defined and are indicated by “xxx.”

James T. Fulton
Neural Concepts
jtfulton@neuronresearch.net

August 1, 2016
Copyright 2011 James T. Fulton
9 Stage 3, Signal Transmission Neurons

9.1 Introduction

There are two distinct methods of signal transmission employed in the neural system, graded potential conduction or tonic signaling, and pulse propagation or phasic signaling. Graded potential and tonic signaling both refer to analog waveform signaling. Graded potential or tonic signaling is only employed within stages 1, 2, 4, 5 & 6 of neural signaling.

Juusola, et. al. have recently explored some aspects of graded-potential (i.e., analog) conduction along electrotonic signal paths, including electrotonic synapses. Their figure 4C presents data on the various quiescent potentials (resting potentials) found by different investigators for both pre and post synaptic plasmas. Unfortunately, the different data points on the pre and post synaptic side are not paired.

This chapter will only address pulse propagation or phasic signaling as used in the neural system. Such neurons are found primarily in mammalian animals. This chapter will address the cytology, morphology, pathology and operation of the individual stage 3 neurons. The anatomy of the stage 3 neurons of the mammal was introduced in Chapter 1 and is discussed in greater detail in Chapter 10.

A critical feature of the axons of stage 3 neurons is the periodic morphological constriction of the axons. The French pathologist Louis Antoine Ranvier first described this periodic constrictions which interrupted the enshrouding of the axon by myelin. However, its functional significance has been obscure up to the present time. It has been described many times as a morphological oddity or a mere structural component. In fact, its physiological role is critical. These constrictions are now known as Nodes of Ranvier and to be the location of phasic signal regenerators critical to the operation of stage 3 neurons.

Zagoren & Fedoroff edited a volume on the Node of Ranvier in 1984. It contains some useful electron-micrographs but is otherwise largely obsolete. All of their models employ simple RC circuits in electrical configurations while relying upon the chemical neuron concepts of sodium and potassium channels. Their “Current working model of the node of Ranvier” on page 319 is barely more than two dashed lines connecting two myelinated axon segments. Page 333 does show an excellent image of a stained axon of a pyramidal cell reflecting the attraction of positive charges to the outside of the axon due to the presence of the high negative charge within it.
More recently, Fields introduced a paper by Tomassy et al. that reviewed the subject of stage 3 propagation based on their interpretation of the role of myelin in the cytology of the phasic neurons used therein.

The Fields paper made several open ended statements of interest but included no detailed models. "Myelin is often compared to electrical insulation on nerve fibers. However, nerve impulses are not transmitted through neuronal axons the way electrons are conducted through a copper wire, and the myelin sheath is far more than an insulator. Myelin fundamentally changes the way neural impulses are generated and transmitted, and its damage causes dysfunction in many nervous system disorders including multiple sclerosis, cerebral palsy, stroke, spinal cord injury and cognitive impairments." While the above quotation is true, it offers no indication of how myelin is causal in these diseases. He then goes on, "A detailed understanding of myelin structure is therefore imperative, but is lacking." More is needed that an understanding of the structure of myelin; it is the functional role of myelin that is most critical. With an understanding of its functional role, abnormalities related to its structure expose the reasons for the diseases associated with myelin. Fields does note in closing, "Myelin ... facilitates modes of nervous system function beyond the Neuron Doctrine, ..." This chapter will describe both the functional and structural role in much greater detail than the paper by Tomassy et al.

Tomassy et al. addressed the gross structural details of myelin in a variety of situations but does not address the functional role of myelin directly. Nor does it address the fascinating structure of the myelin layers as they approach a specific Node of Ranvier in order to form a functional "half-section" of electrical filter theory (Section 9.1.2.4 in this work & in greater detail in Sections 10.3.5 & 10.5.2 of "Processes in Biological Vision" (PBV)). In their discussion, they note, "... the thickness of the myelin sheath varies greatly, and it is a major determinant of the speed of impulse propagation." Contrary to the statement, "High resolution maps of myelin distribution along individual axons are not currently available," the geometry of the myelin forming two half-sections on either side of a Node of Ranvier is reproduced in figure 10.5.2-9 of PBV and originally presented by Rydmark & Berthold in 1983.

Tomassy et al. discussed a variety of neurons in the CNS without describing their individual functions, and thereby failing to differentiate the application of myelin in these different neuron types. They essentially treat all "pyramid" shaped neurons as equivalent, even though some are employed in the encoding of analog signals to generate action potential streams and others are used to decode action potential streams to recover analog information. Other smaller "pyramid" neurons in the CNS are actually stage 4, 5 & 6 neurons handling only analog (tonic) signals. Tomassy et al. note, "It is interesting that these three profiles of myelination can be found in neurons located in immediately adjacent positions within the same cortical layer." They close their discussion with the assertion, "Our results suggest that different classes of pyramidal neurons are endowed with different abilities to affect OL (oligodendrocytes) distribution and myelination." This work suggests that the neuron/OL relationship is quite different. The genetic code describes the form of both the neural cell and the application of OL to that neural cell in order to achieve the desired performance.

Tomassy et al. do identify premyelin axonal segments (PMAS) which are in fact portions of the neuron soma and not a separate axonal segment. These regions contain the axon hillock (the location of the Activa generating action potentials in stage 3 encoding neurons). Only the post Activa portion of the PMAS needs to be myelinated. However, if this portion is short, a Node of Ranvier may be inserted prior to the beginning of myelination on the first true axon segment.

Tomassy et al. close with a very insightful, although less than specific, comment, "Although the functional significance of these heterogeneous profiles of myelination awaits future elucidation,

4 Neurons & the Nervous System

we propose that it may have served the evolutionary expansion and diversification of the neocortex by enabling the generation of different arrays of communication mechanisms and the emergence of highly complex neuronal behaviors. It did! The comment applies to the peripheral neural system as well as the neocortex.

This chapter will address the following:

Section 9.1.1, the topology of signal projection neurons,
Section 9.1.2, the physiology and propagation of neural signals,
Section 9.2, encoding of neural signals,
Section 9.3, actual codes used for neural signals,
Section 9.4, the functional role of the Node of Ranvier,
Section 9.5, the synapse in signal projection,
Section 9.6, the stellite neuron as a signal decoder,
Section 9.7, special topics related to signal projection.

9.1.1 The fundamental topology of the stage 3 signal projection circuit

While the neurons of stage 3 generating action potentials represent only a small number of the total number of neurons (about 5%), they play a major functional role and have been studied most closely (because of their ease of access and easily isolated signals).

Function is used here in the context of the underlying process of a given neural structure, and not as frequently found in neuroscience texts to describe the purpose of the structure.

Stage 3 neurons are found wherever signals are to be propagated more than a few millimeters. They appear to be an invention used primarily in and making possible the phylum of Chordata (colloquially the vertebrates).

The histological description of signal propagation neurons is straightforward. Figure 9.1.1-1 describes the stage 3 signal propagation circuit conceptually. It includes an encoding neuron described functionally as a ganglion neuron and a decoding (or signal recovery) neuron described as a stellite neuron. The ganglion neuron accepts analog signals and creates a phasic pulse train. The stellite neuron accepts a phasic pulse train and creates a copy of the original analog signal. To support signal propagation over long distances, the ganglion neuron incorporates signal regeneration circuits at intervals of about 2 mm. known as Nodes of Ranvier (NoR). The Nodes of Ranvier are functionally independent circuits incorporated morphologically into the ganglion neuron, and supported homeostatically by the soma of that neuron. Each internode of the ganglion neuron consist of regeneration circuit (NoR) coupled to a myelinated axon segment. Myelination is only used with stage 3 neurons. It is used to increase signal propagation efficiency from an energy conservation perspective. The dendrites shown in the figure are unmyelinated and generally much shorter than 2 mm.

![Diagram](Figure 9.1.1-1 Conceptual stage 3 neural circuit. Each internode consists of an axon segment followed by a Node of Ranvier, or in the final internode a pedicle of the axon. The pedicle interacts with the dendrite of the stellite cell via a synapse.)

Figure 9.1.1-1 Conceptual stage 3 neural circuit. Each internode consists of an axon segment followed by a Node of Ranvier, or in the final internode a pedicle of the axon. The pedicle interacts with the dendrite of the stellite cell via a synapse.
The term stellite is used as the functional description of the decoding neurons of stage 3. It describes a large number of the morphologically defined stellate neurons and includes a majority of the large neurons of layer IV of the cerebral tissue.

Functional is used here in the context of the underlying process of a given neural structure, and not as frequently found in neuroscience texts to describe the purpose of the structure.

9.1.1.1 Equivalent circuit of the stage 3 signal projection circuit

The Electrolytic Theory of the Neuron can be used to represent the stage 3 signal propagation circuit using standard electronic symbology. Figure 9.1.1-2 shows such a stage 3 circuit using the circuits developed individually in Chapter 2. The circuit shows five active electrolytic devices (known as Activa) using the standard symbol for a PNP type transistor device. The active devices are shown incorporated in four different circuit configurations. It should be noted that all of the circuit configurations show the base, or poditic terminal of the Activa connected to the external neural matrix (generally through an impedance, P). This configuration is generally known as the common base or common ground configuration. This configuration appears to be used in all neural circuits, except for the second Activa in each receptor neuron.

1. The left-most Activa is shown connected as an active diode representing the synapse between the analog circuit and the encoding Activa of the ganglion neuron. A second synapse, represented by the fourth Activa connected as an active diode, is shown at the input to the stellite neuron.
2. The second Activa from the left is part of the circuit that accepts analog information and generates an action potential pulse stream at its output.
3. The third Activa from the left is embedded in a monopulse regenerator circuit that faithfully regenerates each individual action potential pulse, introducing a fixed delay in the timing between the pulses. As noted, this NoR circuit can be replicated as many times as necessary.
4. The last Activa on the right is embedded in a stellite circuit designed to output a signal indicating the arrival of the first pulse in a pulse train and to provide an analog output signal represented by the integral of the pulses in the pulse train.

The myelinated axon segments are shown as electrolytic elements exhibiting both capacitance and inductance distributed along their length. The presence of the inductance has been documented since the 1950's. This depiction replaces the conventional, and archaic, representation showing a capacitance and resistance distributed along the axon segment. The inductance of the axon segment is the key to the high efficiency of the propagation mechanism.
6 Neurons & the Nervous System

Each of the Activa are shown connected to a local ground terminal represented by the local external neural matrix.

Below the graphic are shown a series of electrolytic test points where signals can be readily sensed. The electrical signals acquired at these points clearly characterize the electrolytic signals being passed through the stage 3 circuits.

- The signals at E and E' are demonstrably analog signals.
- The signals at each F# are demonstrably phasic signals (action potentials).
- The signal at F2 is an attenuated copy of F1.
- The signal at F3 is a precise though delayed reproduction of the signal at F1.
- The signal at Ep generally shows a summation of the waveforms at E' and F1.
- The signal at F5 shows a delayed copy of the F1 waveform at a bias level.
- The signal at G shows a delayed replica of the signal at E'.

Berry & Pentreath have provided a set of waveforms that can be used to illustrate these signals. Unfortunately, they:

- are from a giant dopamine neuron (GDN) of a mollusc.
- required rebiasing during stimulation by up to 35 mV out of a total range of less than 140 mV.
- were stimulated parametrically using a double barrelled microelectrode filled with 0.6 M K₂SO₄.
- are from different preparations and employ different clock rates during excitation.

Nevertheless, the waveforms can be rearranged in Figure 9.1.1-3 to illustrate the waveforms associated with the stage 3 signal projection mechanism. The following figure shows waveforms from test point E', Ep, F1 & G in order beginning on the left. The waveform labeled Ep in the lower row will be discussed below.

The time calibration bars are given as 2 sec for E', and 10 sec for Ep & F1. The voltage calibration bars are difficult to specify from the original citation.

Using the conventional wisdom of 1978, Berry & Pentreath asserted they probed "the soma" of their neuron. They did not seek to probe the electrolytically isolated dendroplasm, podaplas or axoplasm (hillock) compartments within the soma of their neuron.

While no absolute voltages are given relative to the external neural matrix, the waveforms provide considerable information.

The E' (dendroplasm) waveform shows a step in the analog portion of the waveform followed by a series of ramps caused by integration in the dendrite circuit. Each ramp is reset by the spike coupled into the dendrite circuit from the axon circuit. The spikes are seen to be of constant amplitude. However, the amplitude of the root of each spike shows the waveform of the analog stimulus. The pulse rate is seen to decrease following the first pulse until a steady state is reached.

The Ep (podaplas) waveform shows much smaller action potentials riding on an analog waveform representing the stimulus. The attack time constant of the analog component is obvious. The decay time constant after cessation of stimulation is different.

The F1 (axoplasm) waveform is distinctly different. It shows no variation in the baseline prior to action potential generation (no analog stimulation component) and a distinct decay time constant as part of each action potential. The baseline has been truncated to the left of the first pulse and the pulses are equally spaced in this different preparation. The eleven-pulse pattern is compatible with the last 11 pulses of the Ep waveform.

The G waveform shows the recovery of the analog waveform expected from the analog component of the Ep waveform. Each pulse is integrated into the overall response during its duration and the overall response decays at the decay time constant of the satellite decoding circuit. Following the last action potential, the decay continues back to the baseline potential (not shown in entirety).

Additional details related to these waveforms will be provided in the next page of this set.

Berry described his test configuration only by "Conventional amplifying and stimulation equipment was used." A direct coupled oscilloscope is needed to show these waveforms.
8 Neurons & the Nervous System

properly. Otherwise, as here, their important DC bias level is lost and the AC waveform generally exhibit misleading overshoot artifacts. Compare the waveform labeled Ep and the Ep waveform below it (at a different time scale) due to a poorly balanced probe. The negative spikes below the analog waveform are artifacts of the test configuration. Such artifacts are commonly found in the waveforms acquired in biological laboratories.

9.1.1.2 Equivalent circuit of the myelinated axon element CONTENT

The electrical characteristics of the axon have been studied the most because of their presumed dominance in the historical common wisdom. It has been due primarily to the ease of access to axons. The dendrites are generally very small structures and the poditic structures have not generally been identifiable through morphology. These structures will be addressed independently in this section.

9.1.1.2.1 Historical Background

Over the years, a series of ever more complex two-terminal networks have been presented in the literature that purport to represent the active characteristics of “the axon” or “the axon membrane.” From an analyst’s perspective, the proposed networks have gotten out of hand. The original two-terminal network of Huxley et. al. consisted of three current paths and one capacitive path in parallel, each connecting to the “inside” and the “outside” of the plasma membrane. Shepherd shows a total of seven paths. Demir et al. have recently shown eleven independent paths and introduced an unexplained symbol to represent some sort of resistance. Each current path consisted of a battery and a “variable resistor” in series. Subsequent to Huxley et al., the polarity of the batteries frequently varied in subsequent transcriptions, analyses, and expansions of these simple circuits (example, Nickerson et al.). These networks have no significance in the world of electrical engineering and the symbol of a resistor with an arrow through it is not that adopted by the IEEE for a variable resistor. If in fact the symbol represents a resistor, all of the proposed circuits all reduce to a much simpler circuit. The symbol is more closely related to a diode in current circuit theory. These circuits appear to be strictly pedagogical or at best conceptual and requiring many words to elucidate the actual concept. The original network of Hodgkin & Huxley is shown in Figure 9.1.1-4(A). The circuit was highly conceptual at the time and no reason could be found in their papers for the battery in series with the load resistance, R. In the original paper, the authors were careful to specify that they were reporting on a membrane. They did not claim to be reporting on a functional neuron, a functional axon, or even an operating axon, in that paper. The variable resistor symbols were seldom discussed in detail. There has been no discussion of what is controlling their variation although Raymond & Lettvin offer the important observation: “It is obvious that gNa and gK are not two-terminal elements but three-terminal elements; they are governable conductances in much the same way as is any junction transistor ...” Their idea is correct, these proposed impedances are typically three-terminal impedances controlled dynamically by an unknown hand.

Figure 9.1.1-4(B) shows a more precise representation of a portion of neural membrane using the style of Huxley, et. al. The membrane is represented on the right as consisting of a single

conductive path and a single capacitive path. The conductive path consists of a diode and a battery in series. The symbol, i_{diff}, represents a conventional current entering the plasma through the membrane; the symbol, e_{diff}, represents the equivalent electron current flowing out of the membrane from the plasma. In this representation, the circuit on the left represents both the electrostenolytic source biasing the plasma to a negative potential and the load impedance. The load impedance is shown as external to the equivalent circuit of the membrane alone. There are problems with both of these representations. In (A), no means is provided to determining the value of the individual resistances although it is stated that they vary with time and the membrane potential. This statement implies that there must be other elements to the circuit.

(B) is more explicit in defining the membrane as an impedance, Z_m – a diode, in series with a voltage, E_m, both shunted by the intrinsic capacitance of the lemma. These are intrinsic parameters of the bilayer membrane. There are no undefined variable impedances. However, it does not separately identify the different types of lemma present. The circuit on the left represents the electrostenolytic process biasing the axoplasm of the complete neuron. It includes both the load impedance and a battery. The battery potential, V_{sten}, is normally much higher than the intrinsic potential, E_m, of the membrane. The electrostenolytic source is the subject of Chapter 3.

The above representations are incomplete. The actual operation of the axon compartment can be understood using a more complete end view of an axon shown in (C). This frame segregates the membrane of an axon into four identifiable regions shown here as quadrants separated by the lines at 45 degrees. Two of the regions are normally in contact with the extra-neural matrix. The other two are not. In the latter case, each of the regions is in intimate contact with another conduit of the neural path. When biased properly, these two conduits constitute an Activa and exhibit “transistor action.” The emitter terminals on the left appear as diodes in series with an impedance, Z_i. Any change in current, i_i, resulting from a potential, V_{em}, will result in an equal change in current to be injected into the axoplasm causing a depolarization. This depolarization of the axoplasm will cause a change in the current flowing out of the axoplasm through the right Activa. Simultaneously, the electrostenolytic supply will begin to cause current to flow out of that channel to restore the quiescent condition.

It is important to note the pure capacitance in the upper quadrant. A majority of the membrane of any conduit is type 1 lemma and not designed to pass any current. The lower region represents a key element of the overall axon. Like the lemma in the left and right quadrants, the lemma is type 2. Although the membrane itself appears much the same visually as the type 1 lemma, it is intrinsically and functionally different. The membrane exhibits a finite impedance and an intrinsic membrane potential as shown. This portion of the membrane, when coated with an electrostenolytic material, can introduce an electron flow into the axoplasm by electrostenolytic action. This current will generate a voltage across the combination of all of the current paths represented by the various lemma. There is a source impedance associated with this electrostenolytic source. This impedance is the load impedance of frames (A) and (B).

The relationship between the electrostenolytic source, the source impedance and the net impedance of the diodes in parallel determines the quiescent potential, or resting potential, of the axoplasm. To a large extent, it is this axoplasm potential that is measured in experiments.

If the overall circuit in (C) is disturbed by connection to a test set, the quiescent potential and any changes in current flow must be evaluated by adding the test set equivalent circuit to the electrolytic configuration in frame (C). Hodgkin and Huxley reported that the impedances, which they showed as resistances in frame (A), varied with the potential of the plasma. It will be shown this is exactly what is expected of the network of frame (C). In their early papers, they did not address the question of whether their calculated impedances were due to the static or dynamic characteristics of the equivalent diode.

It becomes obvious from frame (C) that the method of sample preparation plays a large role in the measured characteristics of a single section of neural conduit, whether it is called an axon, a dendrite or a podite.
Figure 9.1.1-4: Illustration of various electrical equivalent circuits of the axolemma. A; the 2-terminal equivalent circuit of the isolated axolemma based on the constrained analysis of Hodgkin & Huxley and others. B; the more general network associated with the axolemma that can be used in several specific applications. C; a composite representing a longitudinal cross section of an axon before it has become extended horizontally. The boundary layer between the axolemma and the axoplasm is needed to properly understand the operation of the conduit. The Activa on the left represents the internal connection with a dendrite. This region of the axolemma is of type 2. Conventional current is injected into (electrons actually leave) the boundary layer by transistor action. [All arrows in frame C represent conventional currents]. The Activa on the right represents the synaptic connection with an orthodromic axon segment or dendrite. This region of the axolemma is of type 2. Conventional current leaves (electrons actually enter) the boundary layer by transistor action when the axoplasm depolarizes. The capacitance at the top represents the type 1 membrane used for a majority of the axolemma surface. The network at the bottom represents the type 2 membrane region used to polarize the axoplasm combined with the electrostenolytic source (battery). A conventional current leaves the boundary layer when the axoplasm becomes depolarized. The axoplasm remains isoelectric throughout the process due to the mutual repulsion among the electrons within the axolemma.
9.1.1.2.2 The longitudinal cross-section of an axon with or without myelination

The axon operates significantly differently as its length increases and whether or not it is myelinated.

This section will focus on the topography and terminology associated with an unmyelinated axon. However, since the axon is only a conduit that is very similar in many ways to the conduits known as dendrites and podites, the discussion is easily generalized. The myelinated axon will be discussed in Section 9.1.2.

Figure 9.1.1-5 describes an axon from the perspective of electrolytic chemistry by combining the above material. Frame A is reproduced from Chapter 8 primarily for orientation. Frame B provides an expansion of frame A to add additional details regarding the nature of the materials associated with the different functional elements. It is derived from the figure in Section 10.1.2.

Within both the Activa and the synapse, the outer compartments consist of the bilayer membrane of the lemma facing the central compartment. This compartment contains a liquid crystalline “plug” of water that is the core element of the Activa within both the neuron and the synapse (through which all signal information is transmitted). The ionic conduits representing the axon and two dendrites are shown in block form.

Frame C shows the axon of B in greater detail. There is a region of the axoplasm, described by the Helmholtz Effect that is found everywhere along the inside of the axolemma when it is negatively biased with respect to the surrounding medium. Because of the mobility of the ions within the axoplasm, the axoplasm cannot support rapidly changing electrical fields more than 0.002 microns (2 nanometers or 20 Angstrom) from the lemma wall. Therefore, the bulk of the axoplasm within this Helmholtz Region (shown shaded) remains electrically isostatic during the operation of the neuron. The stream lines indicating electrons leaving the synapse and the electrostatic source and entering the Activa have been exaggerated for clarity. All moving charges remain within the nominal 0.002 microns of the inside wall of the lemma at all times. The significance of this fact is that the effective series resistance of the axoplasm is higher than expected from bulk measurements. In real situations, the effective series resistance should be calculated from the limited cross-sectional area of the annulus formed by the Helmholtz region and the effective resistivity of the material within that region.

It is important to note that the electrosthenolytic site shown in the figure is a glutamic acid receptor site. However, like in other conduits, the site does not receive glutamic acid secreted in the synaptic gap as a putative neurotransmitter. It receives it from the IPM or INM as a routine source of electrical power.
9.1.2.3 Methods of myelination in the neural system

The histological description of the myelination process has been awkward because the process is treated differently for individual and grouped propagation axons or alternately for neurons within the CNS and within the PNS. Fields has made this difference clear in Figure 9.1.1-6. The majority of the stage 3 neurons in the CNS are grouped into commissure and adjacent axon segments within these commissure are myelinated by specialized cells labeled oligodendrocytes. In the PNS, the majority of stage 3 neurons follow separate paths and their individual axon segments are myelinated by individual Schwann cells. The transition between these two methods of myelination is less clear. Further search of the literature would probably show how myelination is performed in the brain stem and spinal cord.
Morrell et al. have provided a drawing showing their conception of the myelination of multiple neurons in greater detail. Aggarwal et al. have recently discussed the histological structure of myelin generated by oligodendrocytes in considerable detail. They noted the role of myelin as an insulator but did not address the electrical properties of the myelin specifically. They did note its role in preventing other chemical entities, particularly proteins, getting close to the axons.

Neurons & the Nervous System

Axolemma, getting between the surface membranes of the myelin sheet or between the adjacent sheets of myelin. They report a sheet thickness of 44.0 ± 8.4 nm. From an electrolytic perspective, the myelin is used to increase the thickness of the dielectric formed by the combined axolemma and myelin sheath. It is critically important that an electrically conductive path not be allowed between the surface of the axolemma, or the surface of any intervening myelin layer and the surrounding extra-neural matrix, thereby reducing the effective capacitance of the combination.

9.1.1.3 The electrical circuit of the axon as a transmission line

Many authors have discussed the axon (and the axon segments in a long axon), such as found in a projection neuron, in the context of charge diffusion along a transmission line with minimal success. Section 6.3.1.2 has presented the technical and historical reasons why the neurological literature has overlooked the propagation mode of signal transmission.

The equations of propagation, (also known as radiation in the unconstrained spatial environment) are not found in chemistry. The equations do not require the motion of charged particles to propagate energy, only to initiate propagation. Formally, the propagation equations are known as Maxwell's Equations or the General Wave Equations (GWE). To understand them requires a background in complex algebra, a subject foreign to most bioresearch students and therefore not addressed in most introductory biochemistry and biophysics texts.

As noted below, the prominent 19th century physicist, Thomson (Lord Kelvin) fought the Maxwellian concept of propagation in favor of his own diffusion theory until he passed from the scene (after apologizing for his failure to understand or appreciate the GWE in a large scientific forum).

To completely understand the transmission of neural signals over distances of more than a few millimeters within the biological organism, several features of the myelinated axon must be recognized.

- It is necessary to recognize the term conduction, as typically used in neuroscience, actually refers to physical charge diffusion along a potential gradient; whereas the term propagation refers to the transmission of energy along a path through the interplay between the electronic and magnetic fields originating from a dynamic change in charge on a capacitor.

- It is necessary to recognize that any coaxial electrical transmission element incorporates an inductance, even when not physically recognizable by the investigator. The dominant electrical elements associated with an axon segment are its capacitance and inductance per unit length.

- It is necessary to discard the archaic concept of the axon as an electrical signal conductor as envisioned initially by Kelvin and later by Hermann. The axon actually involves transmission by propagation, an entirely different mechanism based on the General Wave equation of Maxwell.

- It is necessary to distinguish between the phase (or instantaneous local) velocity of a signal traveling along an axon segment and the much lower average velocity of a signal traveling along an axon consisting of alternating axon segments and Nodes of Ranvier.

- It is necessary to recognize that deterioration in the performance of a pulse propagation path may be due to either (or both) signal attenuation and signal distortion due to differential phase shift as a function of frequency.

The following discussions develop the concepts of electro-magnetic propagation along a contiguous series of alternating axon segments and Nors where differential phase shift is a major limitation in performance.

Figure 9.1.1-7 compares several axon configurations with a man-made coaxial cable.
While the man-made cables conventionally employ a metallic inner conductor surrounded by a metallic cylinder as an outer conductor, the neurological cable uses liquid based conductors for both the central plasma conductor and the outer conductor formed by the surrounding interneural matrix (INM). Only a thin layer of the INM is needed surrounding the neuron to provide an electrical path for charge movement. However, the lack of such a continuous liquid path result in the situation in frame C that does not function as a coaxial cable. The laws of electromagnetism show that any coaxial structure exhibits an electrical inductance. In an efficient coaxial cable, the thickness and dielectric constant of the dielectric is chosen to provide a capacitance per unit length matching the inductance per unit length of the cable. In frame D, the dielectric provided by the myelin wrap has deteriorated. As a result, the capacitance per unit length of the cable has been drastically increased and the cable is no longer an efficient one.

9.1.1.3.1 Failure of the archaic “Hermann Cable” concept

The Hermann cable derived from the earlier work of Thomson without significant change in concept. While the Thomson cable failed miserably when first put into real world application, Hermann continued to promote it in the biological field.

The submarine cable placed between Ireland and Newfoundland in 1858, and designed to Thomson’s specifications, required sixteen and one half hours to transmit the 99 word message of Queen Victoria to the New World. The rate was six words per hour compared to the nominal rate of 15 words per minute of the first successful cable based on Maxwell’s propagation concept. The Kelvin cable was slower than predicted by a factor of about 150:1 and clearly not commercially viable.

Interestingly, Richet documents a variety of other mis-characterizations and miscalculations made by Kelvin culminating in Kelvin’s famous assertion of 1896 before the Scientific Jubilee. “One word characterizes the most strenuous efforts for the advancement of sciences I have made perseveringly during fifty-five years, and that word is Failure.”

All subsequent coaxial cables were designed by electrical engineers in accordance with Maxwell’s Laws (specifically the GWE described below). These have all performed as designed (beginning in 1863).

While Thomson’s accomplishments were many, he could not accept scientific defeat or the burgeoning work of others. His best remembered quotations from later in his life include: “Radio has no future” and “X-rays are a hoax.” He obviously did not consider the general solution of Maxwell’s Equations or the emerging understanding of the photon as too important. Thomson fought the Maxwellian concept of propagation until he passed from the scene.

Since 1850, the biological (including the medical) community has attempted to treat neural signal transmission as strictly concerned with charge diffusion (using the term conduction) as promoted by Kelvin. This treatment is incompatible with the operation of a wide temporal bandwidth transmission line. When examined from the perspective of an electrical transmission line, the axon is seen to be a coaxial cable in form. Such a structure of necessity exhibits both capacitance and inductance. It may or may not exhibit significant resistance, although it will always exhibit a resistive component in its input characteristic (that may not exist as a real resistance within the cable).

For some unknown reason, the biological community adopted the Hermann cable concept of conduction but never moved forward to accept the more complete Maxwellian Theory of Propagation.

Hodgkin & Huxley (H&H) ran into complications in analyzing their data acquired on the basis of lumped parameter measurements. A similar problem was encountered by the competing Cole team. Their solution was to re-frame their operating concept and consider the axon a transmission line. They made this conversion relying upon the Hermann Cable approach involving only resistors and capacitors. Such a leaky transmission line does not describe the unmyelinated axon of Loligo or the mammalian myelinated axon.

In switching conceptual approaches, they introduced their equation 27 (pg 522) without providing any reference or discussion of its constraints. The equation is commonly known within biology as the cable equation as originally promoted by Hermann based on the earlier work of Lord Kelvin. The equation has a number of constraints that are addressed indirectly in both Cole (pages 60 and 212) and Taylor. H&H did not address the impact of their change in concept from a lumped constant axon to an axon supporting a traveling wave. It is difficult to follow the brief discussion in H&H related to their transition from a lumped constant model to the transition to a cable solution based on an action potential present as a traveling wave. Cole did address the change, at least in terms of its impact on the construction of his axial probe. The larger problem relates to the introduction of the “general wave equation” (GWE) and a propagation velocity, θ. They use the 1st order cable equation, that is lossy, as a baseline but substitute into it expressions from the 2nd order general wave equation that only applies to a loss-free line. They appear to have done this to keep θ a real number (as opposed to a complex number). It is not clear they were aware of this subtlety.

The above is typified by their use of the equation \(V_m = f(x_0) = V_{m1} = f(x_1 - vt) \) for a periodic traveling wave. If the line is loss free, this equation holds and the velocity of transmission, \(v = (x_1 - x_0)/t \) where \(x_1 - x_0 = \lambda \), the wavelength of propagation. However, the condition that the line is loss free prohibits the introduction of a series resistance, \(R \), and a capacitance, \(C \), into the cable equation. The presence of \(R \) requires the attenuation constant, \(\alpha \), not be identical to 1.00. The
presence of \(R \) and \(C \) requires the phase constant, \(\beta \), not be identical to 1.00. If \(\alpha \) and \(\beta \) are not equal to 1.00, then amplitude of \(f(x_0) \) cannot equal the amplitude of \(f(x_0-vt) \) at any frequency. The correct solution of the general wave equation to a lossy coaxial line was well known by the time of Cole and Hodgkin\(^{16}\). This author was exposed to it during sophomore year in 1955. Specifically, the dispersion in the signal is due to the difference in velocity of the signal components as given by the equation, velocity = \(\omega/\beta(\omega) \).

Hodgkin and Huxley were aware of the complex plane plots of the impedance of the squid axon produced by Cole\(^{17}\). These plots clearly demonstrate that the squid axon involved a 2\(^{nd}\) order differential equation with both inductive and capacitive components. An axon exhibiting both inductance and capacitance is not compatible with the 1\(^{st}\) order differential equation they used. Nor is it compatible with the Hermann Cable. While Hodgkin & Huxley recognized the claim of Cole that an inductance was present, and they calculated a value for it from one of their relaxation curves, all of their equations and calculations involved real numbers. No imaginary terms appear anywhere in their equations. The phase shift associated with an inductance was never addressed (pg 540).

Taylor attempted to rationalize some of the many models of cables in the literature up through that of Hodgkin & Huxley. Taylor presented a thorough mathematical review of “Cable Theory,” as restricted to an RC cable, in detail\(^{18}\). He includes a section on the giant axon with an axial wire introduced into it. Taylor does note the following crucial fact ten years after the work of Hodgkin & Huxley. “Since the 1939 papers of Tasaki, in which he demonstrated directly that only the nodes of Ranvier in mammalian myelinated nerve are excitable it has been abundantly shown and generally conceded that the ‘salutatory’ theory as propounded by Lillie is correct.” This position may have been more controversial than he suggests. However, it remains correct today. He references Tasaki’s 1953 paper and provides a caricature of the myelinated axon with Nodes of Ranvier. Why Taylor did not interpret the complex plane data of Cole as calling for a second order differential equation containing both inductance and capacitance is not clear.

Taylor then makes a set of assumptions. “We make the assumptions that the radial currents in the core and external region are to be ignored, that the myelin sheath between nodes has an infinite resistance and negligible capacitance and that the node width is negligible small but with finite impedance.” This statement defines a loss-free line and not the Hermann Cable he continued to use in his analyses.

While the review by Taylor in 1963 provided a more modern interpretation of the work of Hermann and Thomson, He chose to “consider only the steady state in time, and only the direct current resistance and conductance concepts.” By also ignoring any radial electrical fields within the plasmas, he further restricted his analysis to the Equation of Heat Flow. He posited that if the membrane was represented by only a parallel combination of a resistance and a capacitance, his core conductor model represented an “ideal submarine cable,” the differential equation for which has been derived a number of times since first treated by Thomson (Lord Kelvin). This approach essentially takes the field back in time to that of Kelvin and Hermann and ignores what was learned about a real submarine cable from the in-place test results.

At mid-20th Century, Cole discovered and documented the inductance associated with myelinated axons. However, the biology community did not understand the terminology Cole used and rejected the idea that inductance played a role in axonal physiology.

Twenty years later, Rall provided a short mathematical rationale between signal propagation

18 Neurons & the Nervous System

by diffusion versus electromagnetic waves\(^{19}\). However, he did not differentiate between signal projection neurons involving action potentials and other types of neurons. The matter of myelination is a crucial factor in discussing these two major classes of neurons. Without recognizing the difference between these classes, it is unrealistic to draw conclusions as is done at the end of his rationale.

The premise of this work is that myelinated signal projection neurons employ electromagnetic wave propagation while the considerably shorter unmyelinated signal processing neurons employ a parabolic partial differential equation as found in mechanism employing diffusion. In the case of electromagnetic wave propagation, the partial differential equation is hyperbolic. Rall also provides a simple definition of the Neuron Doctrine, based on morphology, that dates from Cajal. Although accepting the part of the doctrine that suggests the signal path is not continuous but contiguous with interruptions at (at least) the synapses, it discounts the idea of the neuron as the basic building block in favor of the Activa-conduit pair. He also presents a brief definition of the core conductor concept of an axon which is considered too simple for purposes of this work. His table of parameters for different types of axons is useful.

Rall references Kaplan & Trujillo\(^{20}\) who considered the transition between these two functional environments. They used the physical model of an axon found in Rall and the empirical differential equations of Hodgkin & Huxley. The physical model was a simple core of axoplasm surrounded by an infinite volume of INM. Their computations involved numerical solution by digital computer. They adopted Hodgkin & Huxley’s lossy axolemma in their analysis and assumed physical transport of charge along the axon in the form of ionic flow. They did not discuss how ionic flow was achieved in a viscous, possibly liquid crystalline material. They discuss a “left-over” term in their equation fitting their model and use an impulse function to simulate the leading edge of an action potential. Unfortunately, they adopt an average velocity of 12.3 m/sec as a reference value for the velocity of neural signals common to all neurons. This led to problems in their analyses. Instead, they should have introduced the much higher phase velocity, of 4400 m/sec within an axon segment and a nominally higher 44 m/sec for the average velocity associated with a NoR/axon combination when addressing projection neurons (Section 9.1.2.3).

Scott\(^{21}\) reviewed the Kaplan & Trujillo paper but found it wanting in several respects while indicating his analysis was “a drastic simplification of the properties of a real active membrane.” Scott does not clearly establish whether the “action potential” of the squid giant axons is the result of diffusion of a signal or propagation of a signal. Its slow speed over a short distance that does not include a Node of Ranvier suggests it is a pseudo action potential. He adopts the slow diffusion (conduction) velocity of 21.2 m/sec of Huxley and Hodgkin while he employs the propagation equations of Maxwell. His model of the axon is very simplified. He introduces the terms magnetic inductance and inertial inductance, computes the axon capacitance based on the properties of a flat sheet capacitor and proceeds to compute a negative inductance for a simple linear circuit. His one sentence conclusion is primarily political. However, he does suggest that the omission of any inductance by Hodgkin & Huxley in their equivalent circuit was based on “good intuition.” In a later book\(^{22}\), Scott is forced to introduce the analogy of “little green boys” (pages 45–46) to explain the variability in the membrane of Hodgkin & Huxley. Good intuition must continually be re-confirmed by up-to-date experiments.

\(^{19}\)Rall, W. (1977) Core conductor theory and cable properties of neurons. Chapter 3 In Handbook of Physiology, Section 1, Vol. I, Kandel, E. ed. pg. 60

\(^{22}\)Scott, A. (1977) Neurophysics NY: John Wiley & Sons
Rushton made a move away from the Hermann cable by proposing a “local circuit” showing energy in the form of charges moving along the axolemma in a periodic manner. It is unfortunate that other investigators did not challenge the work of Rushton. Replacing his essentially static “local circuit” by the dynamic “local interaction” of electromagnetic fields would have led to an entirely different perspective on neural signal transmission.

It is important to note that there is no requirement that a transmission line provide a conductive path for electrons or ions along its length. It is only necessary that electromagnetic energy can be continually shared between infinitesimal segments of a capacitor and an inductor. The process is similar to the propagation of radio signals through free space. No ether is required. The phase velocity of signals along such a line is determined by the product of the inductance and the capacitance per unit length. It does not depend on the conductivity of any plasma within the conduit. This fact negates many of the conceptual models in the literature based on a current loop frequently conceptualized as involving a “local circuit” (discussed in Section 6.3.1.2).

9.1.1.4 Application of the GWE to the myelinated axon

As noted at the beginning of this chapter, to understand the operation of the neural system, it is necessary to move beyond a single concept applicable to all neurons. Different conditions related to unmyelinated, myelinated and pseudo-myelinated axons result in different underlying mechanisms. Different mathematical solutions describe these mechanisms. This chapter builds on the fundamental characteristics and features of the action potential generating pulse neuron of Section 2.6 with specific attention to the role of myelination of the axon and its individual segments. The myelinated axon supports a mode of signal transmission, known as signal propagation in the electronics field that is critically important to the understanding of stage 3 neuron operation. Failure to appreciate the role of signal propagation, as opposed to signal diffusion along conductive paths, will prove a major barrier to understanding the physiology of the neural system.

A cursory scan of Physical Chemistry texts quickly confirms a relevant fact. The field of chemistry does not usually employ the complete version of the General Wave Equation (GWE). Only the simplified forms of Poisson’s Equation and the Heat Equation are found. As a result, most of the investigators in neurological research have not been introduced to the GWE, the fundamental equation describing stage 3 signal propagation.

The General Wave Equations (GWE) of Maxwell are required to understand the operation of a coaxial transmission line such as a myelinated axon or axon segment. These equations are second order differential equations that are deterministic and easily solvable in closed form. They are required when the coaxial transmission line includes an inductance component, and all coaxial lines include an inductance as a component. The neuroscience community has avoided the use of the GWE even after the presence of an inductance component was measured in detail by Cole during the 1940’s. This has caused a serious impediment to the understanding of the neuron. If no inductance term is present, the second order differential equations of the GWE reduce to a single first order differential equation, known as the diffusion equation or the heat equation, of Thomson (Lord Kelvin). However, as noted above all coaxial cables exhibit an inductance component, even if the researcher does not recognize its physical presence. As noted in Section 9.1.1.3.1, Lord Kelvin made a fool of himself in the 19th Century denying the existence of the GWE even though he was Director of the Cavendish Laboratory when Hermann and Maxwell shared office space there during the 1830’s.

Students and journeymen neuroscience investigators usually do not have the necessary mathematical background, including complex algebra, to understand the methods of GWE solution. However, the results described in this chapter are well supported and used universally. A critical factor is the axon is a cylindrical coaxial transmission line with the myelinated lemma acting as the insulator and the fluids of the axoplasm and the surrounding extracellular fluids acting as the inner and outer conductors respectively.

9.1.1.4.1 The fundamental GWE
Maxwell’s equations have been expressed in integral, differential and matrix form. This makes their application easy in the hands of an experienced investigator. However, they are frequently daunting in the eyes of the uninitiated.

Maxwell’s General Wave Equation, in its most compact matrix form, can be expressed as:

\[\nabla^2 V = \frac{1}{v^2} \cdot \frac{\partial^2 V}{\partial t^2} \]

where del, the inverted delta, is a vector operator but not technically a vector itself. Capital V is a vector and nu, \(\nu \), is a scalar (that may be a complex mathematical function). This equation applies to any problem involving up to the 2nd differential of the variable, \(V \), with respect to any coordinate system required to adequately express the variable.

In differential form, it is usually expressed in Cartesian coordinates as;

\[\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = \frac{1}{v^2} \cdot \frac{\partial^2 V}{\partial t^2} \]

The equation describes the sum of the 2nd order differentials of the variable with respect to the three spatial coordinates as equal to the 2nd order differential of the variable with respect to time. In many applications, the equation simplifies significantly when some of the terms in the expanded form of the equation are equal to zero.

1. If the value of the right-hand term equals zero, the equation is known as Laplace’s Equation. This form is important in the study of electrostatics and many other problems involving static fields.

2. If the value of the right-hand term is a constant, the equation is known as Poisson’s Equation. It applies to more complex electrical field problems that contain a localized concentration of charge, and many other problems.

3. If the value of the right-hand term is proportional to the time and the left-hand term only involves the first order differential with respect to position, the equation is known as Kelvin’s Equation or more often, the Equation of Heat Flow. The equation represents the transfer of heat between a stationary source and a sink by conduction (diffusion).

4. The general condition applies when the right-hand term is a second derivative with respect to time. This is the form (the General Wave Equation or GWE) that introduces the dynamic interaction between the variable with respect to both distance and time. This is the form that predicted the propagation of radio and light waves through free space (independent of any aether or other medium) and describes the travel of electromagnetic and acoustic waves through, or along the surface of, a variety of materials.

The GWE is also the form used to describe the operation of electrical filters of arbitrary complexity. Filter theory is a very specialized discipline even within electrical engineering and not widely taught except at the graduate level.

Transmission lines are a special class of electrical filters. The coaxial cable is a specific type of transmission line that is of particular interest here.

The filigreed terminations of the myelination on axons and axon segments at NoR are also specialized applications of the GWE in filter theory. These areas constitute “half-section” filters.

The operation of the cochlea of hearing is an even more specialized filtering application of the GWE involving a cylindrical coordinate system. The specific form of the cochlea is an exponential helix where the dispersion of acoustic energy is controlled by the curvature of the
helix in space.
http://neuronresearch.net/hearing/pdf/4Physiology.pdf beginning with Section 4.4 and
http://neuronresearch.net/hearing/pdf/5Generation.pdf

9.1.1.5 Application of the GWE to neuron operations

To understand the operation of the neural system, it is necessary to move beyond a single concept applicable to all neurons. Different conditions, related to unmyelinated, myelinated and pseudo-myelinated axons, result in different underlying mechanisms. Different mathematical solutions describe these mechanisms.

By closely examining the operation of neurons, in the context of the GWE, it is possible to define two fundamentally different operating modes. One deals with the conduction (diffusion) of electrotonic signals (energy) through a bulk medium in the presence of a resistive element and a lumped-constant reactance that is dominated by capacitance. The second mode deals with the propagation of phasic signals (energy) largely independent of the medium present (except it may be guided by major discontinuities in the electrical properties of the medium or the surroundings). In this case, the electrical elements (R, L & C) of the cable are distributed. In a well-designed system, the reactances of the capacitive and inductive components of the coaxial cable tend to cancel each other.

The first mode corresponds to conduction in the unmyelinated axon, and in the neurites. When expressed in mathematical form, this mode corresponds to a first-order differential equation such as the Heat Equation. The solutions of these equations are represented by “real” mathematical expressions. The second mode is more complex. When expressed in mathematical form, the mode corresponds to a second-order differential equation satisfying the GWE. The solutions of these equations are represented by “complex” mathematical expressions. These expressions introduce the new mechanism of propagation.

The solution for the one-dimensional transmission of energy over an axon is well known and is given as [xxx see page 328 in Chapter 7 of hearing book, section 7.4.3.2]

Demyelination results in yet another situation related to myelination that is clearly pathological and will be addressed briefly in the context of a medical condition in Section 9.1.2.5 and more completely in the Chapter on disorders affecting the neural system. xxx

9.1.1.5.1 The cylindrical transmission line

The axon segment of a stage 3 signal projection neuron is a cylindrical transmission line. Its performance is significantly increased if it is myelinated to reduce the effective capacitance of the axon segment per unit length. In this case, the input impedance of the axon segment is reduced considerably and the propagation velocity is increased significantly (to the values measured in the laboratory).

The biological community has generally calculated the capacitance of an axon by calculating the apparent area of the axon and considering it equivalent to a flat plate capacitor. For precise work, it is necessary to recognize and use the correct formula for the capacitance of a concentric cylindrical structure. This structure exhibits both a capacitive and an inductive electrical component. The formulas are given in the previous reference to Kraus. The result is that any axon transmitting a waveform of complicated shape with respect to time consists of all of the circuit elements discussed below.

As noted by Schwan, the in-vivo capacitance of an axon may differ from its value in air due to the absence of the higher dielectric material that normally surrounds it. If the in-vivo material has a complex dielectric constant, the effective capacitance in-vivo must be divided by the square root of that value. This variation may aid in rationalizing some of the capacitance values

\[\text{xxx see page 328 in Chapter 7 of hearing book, section 7.4.3.2} \]

Demyelination results in yet another situation related to myelination that is clearly pathological and will be addressed briefly in the context of a medical condition in Section 9.1.2.5 and more completely in the Chapter on disorders affecting the neural system. xxx

9.1.1.5.1 The cylindrical transmission line

The axon segment of a stage 3 signal projection neuron is a cylindrical transmission line. Its performance is significantly increased if it is myelinated to reduce the effective capacitance of the axon segment per unit length. In this case, the input impedance of the axon segment is reduced considerably and the propagation velocity is increased significantly (to the values measured in the laboratory).

The biological community has generally calculated the capacitance of an axon by calculating the apparent area of the axon and considering it equivalent to a flat plate capacitor. For precise work, it is necessary to recognize and use the correct formula for the capacitance of a concentric cylindrical structure. This structure exhibits both a capacitive and an inductive electrical component. The formulas are given in the previous reference to Kraus. The result is that any axon transmitting a waveform of complicated shape with respect to time consists of all of the circuit elements discussed below.

As noted by Schwan, the in-vivo capacitance of an axon may differ from its value in air due to the absence of the higher dielectric material that normally surrounds it. If the in-vivo material has a complex dielectric constant, the effective capacitance in-vivo must be divided by the square root of that value. This variation may aid in rationalizing some of the capacitance values

\[\text{xxx see page 328 in Chapter 7 of hearing book, section 7.4.3.2} \]

Demyelination results in yet another situation related to myelination that is clearly pathological and will be addressed briefly in the context of a medical condition in Section 9.1.2.5 and more completely in the Chapter on disorders affecting the neural system. xxx
By closely examining the operation of neurons, in the context of the General Wave Equation (GWE) of Maxwell, it is possible to define two fundamentally different operating modes. One deals with the conduction of electrotonic signals (energy) through a bulk medium. The second deals with the propagation of phasic signals (energy) largely independent of the medium present (except it may be guided by major discontinuities in the electrical properties of the medium or the surroundings).

Only the un-myelinated neuron is properly represented by a first order differential equation such as the Heat Equation (also known as the diffusion equation).

Scott24,25,26 tried to calculate the exact transmission characteristics of an unmyelinated axon in 1971 through 1975. His first examination showed, “A recently developed exact transmission line equivalent circuit is then used to estimate the series inductance for a squid axon. It is found to be about five orders of magnitude too small to influence the conduction velocity.” In the second paper, he performed extensive mathematical manipulations, and incorporated a variety of assumptions, but failed to determine that the inductance per unit length of a coaxial transmission line was a logarithmic function of the thickness of the lemma/myelin combination. By 1975, Scott had reverted to a “derivation of the nonlinear diffusion equation.” Scott’s approach has not been pursued effectively in recent times. His difficulty arose in two areas. He was mistaken in confusing the actual propagation velocity of the axon segments with the apparent (average) propagation velocity of the combined axon segment and slow signal regenerator within the Node of Ranvier. He was also in error when he tried to apply coaxial cable theory to the unmyelinated axon.

When Maxwell’s equations are applied to the myelinated axon situation, they call for the interaction of electrical and magnetic fields. These fields can be related to two primary parameters, a resistive component and a reactive component(s). The reactive component(s) is represented by the imaginary terms in the equations (see Section 9.1.2.2). This component is present in two forms. In physical systems, the positive imaginary component is associated with the inductance of the system. The negative imaginary component is associated with the capacitance of the system. In transitioning from a heat flow analog to an actual electromagnetic application, the inductance of the axon measured by Cole (in cited section) becomes quite understandable.

9.1.1.5.2 Physiological model for a signal projection neuron

Figure 9.1.1-8 presents the electrical circuit of the typical axon within the larger context of the neural system. The figure is meant to be generic and apply to both the simple neuron and the more physically extended neuron consisting of one or more Nodes of Ranvier. In this context, the two titles above the figure are dual and the last Activa on the right may be either a Node of Ranvier or a generic synapse. By referring to the individual zones of the axon, it is possible to avoid confusion. For compatibility with other figures, the Activa on the left is shown being driven by a voltage source, V_e. The conduit in the center of the figure is the transmission line of interest. It is partially myelinated. The electrostenolytic voltage sources are shown as V_{cc} and V_{ee}. The

25Scott, A. (1972) Transmission line equivalent for an unmyelinated nerve axon Math Biosci vol 13(1-2), pp 47-54

A coaxial transmission line is an unbalanced transmission line. Such a line does not require a conductive path between its two terminals. However, if energy is extracted from the terminal, a conductive path back to the source must generally be provided. In man-made circuits, this is typically through a “ground” connection which is independent of the actual transmission line. In many high performance transmission lines, the conductive path associated with at least one of the conductors is intentionally broken to avoid undesirable extraneous loop currents.

Little is known about the detailed electrical properties of the individual membranes and electrolytes forming the conduit. This is partly due to the oversimplified model of the conduit used previously. Stampfli says the specific resistance of the INM is similar to that of Ringer's solution (90 ohm-cm at 20 Celsius)\(^2\). However, because of the high quality of the insulator represented by the axolemma and the myelination, little error is introduced by making the above assumption. Under this assumption, the capacitance and inductance of the transmission line and the two lumped capacitors can be calculated and compared to the measured values in the literature. In general, only lumped capacitance values are found in the literature.

9.1.1.5.3 The electrical transmission line model of a signal projection neuron

There has been a general misconception in the biological literature, dating from Hermann in the

late 1800’s28, that an electrical transmission line of adequate bandwidth can be composed of only resistors and capacitors. This position is not founded on electrical engineering principles29 nor supported by subsequent physiological experiments. \textbf{The axon of a neuron can not be properly modeled as a Hermann Cable.} Cole discussed this fact extensively in 196830. He showed that the typical axon exhibited a large inductive component through measurement. While he did not provide a satisfactory explanation for this inductance, it was clearly present, and is well documented. As Cole describes it, "The suggestion of an inductive reactance anywhere in the (neural) system was shocking to the point of being unbelievable." To this day, the fact that the axon of a projection neuron exhibits considerable inductance has not been accepted in academia and pedagogy. However, the tide was turning at the research level even then. Schwan also began discussing the inductance of axon in 196331. As seen in this work, it is the combination of inductance and capacitance that determines the very high signal propagation velocity of the individual axon segment when operating in the signal propagation mode (where it is usually myelinated). This velocity is much higher than the velocity achieved by diffusion in axons associated with stage 1, 2 and 4 neural operations.

Hermann adopted a simple RC network to represent what he understood to be “a leaky telegraph cable.” It must also have been a short leaky telegraph cable. This configuration suffers from significant temporal dispersion in the frequency components of the signal with distance. A transmission line always consists of capacitors, inductors and resistors. Technically, the resistor is optional. A transmission line is an electrical circuit designed to emulate free space but to direct the signal energy to a more limited target location. Free space has a resistive characteristic impedance of 376.7 Ohms although it is completely empty and exhibits no resistive element. An electromagnetic wave travels through free space at the speed of light. Except in a few novel situations, a passive transmission line always exhibits a characteristic impedance less than that of free space. The velocity of energy propagation along a transmission line is always lower than the speed of light.

[Figure 10.3.4-4] illustrates the equivalent circuits representing a coaxial axon. (A) shows the typical lumped-parameter representation. In the ideal case, and within the operating range of the axon, the values of the resistive elements are such that the currents through them can be ignored. The dominant currents are reactive currents associated with the inductive and capacitive elements. The resulting lumped constant network is show by the heavier lines. To more accurately represent the physical length of a real axon, it is more appropriate to describe it by using the heavier network on the left replicated on an incremental basis. The resulting distributed model is shown in (C). This simple network describes the electrical performance of the real axon over the distance between its terminal components.

The network in (C) has a characteristic impedance that is seldom well matched to the driving source. This leads to electrical inefficiency. To avoid this problem, good design practice calls for the introduction of a “matching filter” section between the transmission line and the source and between the transmission line and the following sink. These matching sections are lumped parameter networks similar to that in (D). These filters are similar to one half of the filter shown in (A) but with slightly different parameter values.

Several significant features should be noted for such an ideal circuit.

1. No resistive elements appear in the distributed equivalent circuit of the axon. The circuit is not dissipative of electrical power.

28Hermann, L. (1905) Lehrbuch der Physiologie, 13th ed. Berlin. See also Hille, pg. 27

2. An actual axon consists of two portions, the extended middle section described by the distributed equivalent circuit, and the “matching” end segments which are best modeled using a circuit similar to the lumped constant model.

3. The signal propagation velocity along the axon is determined entirely by the ratio of the inductive to capacitive components per unit length.

4. The loss in signal amplitude along the axon is very low in the ideal case.

In a real myelinated stage 3 signal propagation axon. The shunt conductance is negligible but the series resistance (representing the conductivity of the plasmas on each side of the myelinated axolemma, is not. It is the primary parameter limiting the propagation velocity of the axon. It also dissipates some power. This resistance introduces both attenuation and phase distortion into the transmission line. As will be discussed in the data section below, it appears phase distortion is a greater problem in real axons than is attenuation.

These features of a real axon differ considerably from the Hermann Cable model.

A transmission line exhibits a series of important parameters. Four of these parameters are basic;

+ the series inductance per unit length of the line, \(L/m \)
+ the series resistance per unit length of the line, \(R/m \)
+ the shunt capacitance per unit length of the line, \(C/m \)
+ the shunt conductance per unit length of the line, \(G/m \)

The series impedance of the line is given by \(Z/m = L/m + R/m \). The shunt admittance is given by \(G/m + C/m \).

Three additional parameters are calculated from the above;

+ a characteristic impedance—it is important in how a separate circuit drives and how a receiving circuit terminates the transmission line.
+ the velocity of signal propagation along the transmission line
+ the propagation constant of the transmission line. It is a measure of the quality of a transmission line.

To understand, derive, and evaluate expressions for these parameters, it is necessary that the investigator be familiar and comfortable with complex algebra. The characteristic impedance, \(Z_0 \), is defined as the square root of the series impedance divided by the shunt admittance determined from the four basic parameters. The propagation constant, \(\gamma \), is defined as the square root of the product of the series impedance and the shunt admittance. These two quantities are usually defined using complex algebra, where they are the real and imaginary parts. The real part of the propagation constant describes the attenuation constant, \(\alpha \). The attenuation factor for a line is given by the expression \(e^{-\alpha} \), the decrease in signal amplitude with distance along the line. The imaginary part describes the phase constant, \(\beta \). The propagation velocity is given by the frequency of the signal divided by the phase constant. In transmitting a pulse waveform over a transmission line, it is important that all Fourier components of the pulse travel at the same velocity. Otherwise, the line is considered dispersive and the pulse is distorted as it travels along the line. If \(\beta \) is a not a linear function of frequency, the velocity of propagation of the transmission line will be a function of frequency and the pulse will become distorted as it travels along the line.

There are only a few special cases among these equations. A lossless line does exhibit a characteristic impedance given by a pure resistance, as does the lossy line where \(G/C = R/L \). In general, a lossy line does not satisfy this ratio. Any other lossy transmission line exhibits a complex characteristic impedance and all lossy transmission lines exhibit a phase constant that is a function of frequency—resulting in waveform distortion. The phase constant associated with a transmission line lacking in inductance, i.e. made up of only resistors and capacitors, is highly dispersive and such a line is not appropriate for pulse transmission. Fortunately, all coaxial
transmission lines, such as used in neurons, exhibit considerable inductance.

9.1.1.5.4 Recent modeling of axons based on passive models

[xxx copied in bulk from a section in Chapter 19 on pain]

McNeal et al. introduced a passive model of the axon in 1976 based roughly on the much earlier conceptual work of Huxley and Hodgkin. During the 1990's, several authors discussed a variety of passive axon models. They discussed both the pros and cons of these models. In 2002, McIntyre et al. provided an extensive paper that actually used the term “active” to describe the operation of a neuron and proposed conceptually an active component to their model.

Rattay & Aberham provided their interpretation of four different models of the axon. They noted, “Up to now, most results were obtained with the Frankenhaeuser-Huxley model, but nearly all of them are wrong in time scale and the cathodic block phenomenon was not observable because the temperature dependence of the gating mechanism has been neglected.” They provide an analysis of the McNeal model but they provide no schematic to support their modeling.

McIntyre et al. also introduced the physical description of a Node of Ranvier from Berthold and associates of the 1980's (see footnotes to their Table I). As they note, “Unfortunately, geometric representations of the internodal sections in nerve fiber models have not been strictly based on experimental morphology. Instead generically sized sections of two layers of components representing the axolemma and myelin sheath have been used, and as a result, the fine geometrical properties of the paranode could not be accurately represented.” This situation is easily corrected by referring to Chapter 9 of this work and the more extensive description of stage 3 neuron operation provided in Chapter 7 of “Hearing: A 21st Century Paradigm.” It is shown there that the operation of the stage 3 myelinated neuron and its Nodes of Ranvier is much different from that predicted in the conventional literature. The sections of the axon adjacent to the Node of Ranvier identified by the Berthold group are easily shown to be “end sections” within the conventional academic specialty of electrical filter design. The Node of Ranvier is easily shown to consist of an Activa, an active liquid crystalline semiconductor device analogous to the transistor of the man-made solid state semiconductor world.

Unfortunately, McIntyre et al. adopt the unsolved partial differential equations of Hodgkin and Huxley (1952) as their baseline in their Appendix. In their figure 1, their circuit models have been limited to RC networks employing variable resistors where the mechanism of changing their resistance is unspecified. With the increased capacity of desktop computers, their approach has been widely employed in spite of the availability of closed form equations describing the operation of the stage 3 neuron much more precisely.

Most of the computer aided modeling of neurons beginning in the late 1980's and continuing to date is best described as pedagogical procedures, rather than an actual investigation related to the neural system. They have frequently been reported by undergraduates or post docs still learning their craft. Warman et al. assert that McNeal first introduced the methodology they employ when McNeal (1976) attributes the methodology to Hodgkin & Huxley (1952). Warman et al. limit their cable model to the RC

networks of Hodgkin & Huxley with the undefined hand controlling the variable resistive impedances.

In Figure 1, McIntyre et al. also introduce their concept of a double cable model which they attribute to Halter & Clark. While Halter & Clark adopt the model of the myelinated neuron of Berthold and associates, they do not describe a double cable model. In fact, the concept of a double cable model is faulty. The myelination is functionally integral with the lemma of the axon segment. The result is a simple coaxial cable with the fluid within the axon segment and the matrix outside of the neuron forming the electrically conducting structures surrounding a very high quality insulator formed by the lemma and the myelination. Halter & Clark do note the choice of Hodgkin and Huxley to ignore the effect of nodal constriction on conduction velocity to be significant due to the relatively short distance of the constriction. None of these parties recognized the very significant delay introduced by the Node of Ranvier into their average conduction velocity calculations (see the next figure and discussion).

A second source from McIntyre et al. is Zhou et al. Zhou et al. also rely upon the graphics and designations of the Berthold group, although they attribute them to Halter & Clark. However, they focus entirely on the Node of Ranvier and do not document the propagation velocity of the axon segment. Their interests involve the effect of genetic mutations. They make an assertion that indicates their failure to understand the fillagree region of the myelination on each side of the Node of Ranvier. “The transition zone between the myelinated and the nonmyelinated segment near the nerve terminal is a site of impedance mismatch that is particularly vulnerable to excitability perturbation, both physiologically and pathologically.” In fact, this region is a “matching section” of filter theory designed to specifically avoid their assertion of mismatch.

A second paper by Zhou and Chiu provide their model of a branch point at a Node of Ranvier supporting two subsequent axon segments. Their failure to recognize the transimpedance properties of the Activa within the Node of Ranvier, and their subsequent use of linear matrix algebra, limits the value of this paper.

Figure 8A of the 2002 McIntyre paper has been simplified from Text-fig 6 in a paper by Boyd & Kalu in order to make their results appear more relevant to empirical measurements. There is no operational rational for subdividing a data set, calculating individual linear regression lines for each portion and taking the regression lines as the actual data. The dashed higher order regression line of the original figure is just as valid.

Boyd & Kalu provide considerable data on the average velocity of neural signals in various types of neurons using cats. They attempted to correlate these average velocities to the total diameter of the associated neuron. They did not comment on the dimensions or degree of myelination of these neurons.

In 2013, Capogrosso et al. provided an extensive 3D computational model of the motor neurons involved in epidural stimulation of spinal neurons. They used FEM techniques. Their paper is discussed in Section 19.11.8.4. They continued to use a conceptual model based on the archaic Hodgkin and Huxley model of the 1940’s (although they did not cite this source). That model assumed the outer membrane of an axon segment was the functional element of the neuron.

36Halter, J. & Clark, J. (1993) The influence of nodal constriction on conduction velocity in myelinated nerve fibers NeuroReport vol 4, pp 89-92 Also Houston, TX: Rice University; Center for Research on Parallel Computation CRPC-TR93309

They offered similar but statistically different conductivity values from those of Struijk based on Geddes & Baker. While their graphics are colorful, their schematics do not provide any insight as to the operation of the axon segment and Node of Ranvier beyond the conceptual circuits of Hodgkin & Huxley.

The modeling activities since the 1980’s have also described conduction velocities for their neurons that are misrepresented. Their velocities in the order of 30-60 meters/sec actually apply to the combination of an axon segment and a Node of Ranvier, where the delay associated with the regeneration of the action potential is actually dominant. The propagation velocity along an axon segment is very well documented to fall in the 4400 meters/sec range (nominally 100 times faster than typically reported in these pedagogical studies). Figure 9.1.1-8 is an annotated figure from Figure 7.4.5-1 in “Hearing: A 21st Century Paradigm”, using the data from Smith et al.

40 http://neuronresearch.net/hearing/pdf/7Projection.pdf#page=46

This figure clearly shows the propagation velocity of an individual axon segment is approximately 4400 meters/sec while the average transmission velocity between equivalent points separated by a Node of Ranvier is on the order of 44 meters/sec, a reduction of a factor of 100 due to the significant delay introduced by the regeneration of the action potential within the Node of Ranvier.

Figure 9.1.1-9 Saltatory conduction in a normal rat ventral root fiber. Frame A shows the propagation velocity for the axon segment extending between Nodes of Ranvier. Frame B & C show different presentations of the same data clearly showing the average propagation velocity between nodes of Ranvier and dominated by the regenerator delay (0.019 msec) of the Node. Modified from Smith et al., 1982.
9.1.1.6 The relaxation oscillator of stage 3A and Nodes of Ranvier

The relaxation type oscillator is a rare form of oscillator that provides an output pulse of the same polarity as its stimulating pulse but only involves a single active device (one activa in biological circuits or one transistor in man-made circuits).

9.1.2 The propagation of action potentials-the dynamic situation

To completely understand the transmission of neural signals over distances of more than a few millimeters within the biological organism, several features of the axon developed in Section 9.1.1 must be recognized.

The following discussions rely upon the concepts of electro-magnetic propagation along a contiguous series of alternating axon segments and N o R where differential phase shift is a major limitation in performance.

9.1.2.1 Background

Because the concept of signal propagation within the myelinated axon of a neuron is new to most readers of this work, a comparison between the conceptual, and cartoon dominated, discussions of signal conduction versus the more fundamentally founded discussions of signal propagation is appropriate and probably mandatory.

The key fundamental differences are two;

• Signal propagation along a myelinated axon or axon segment does not involve the movement of charged particles. It involves the coupling between changing electric and magnetic fields.
 • The phase relationship between these fields determines the direction of propagation.
 • No electrical field parallel to the direction of propagation is required.
 • The velocity of the propagation is determined exclusively by the permittivity and permeability of the medium through which the propagation occurs, and the ratio of the outer to inner radii of the combined lemma and myelin sheath.

• Signal conduction along any neurite or axon element requires an electrical potential gradient parallel to the direction of charge (ion or hole) flow.
 • The electrical potential gradient must be maintained for the duration of the conduction process.
 • The biological medium is generally in the liquid crystalline state.
 • There are many parameters associated with charge transport through a liquid crystalline substrate.

Propagation is entirely defined by the General Wave Equations of Maxwell. Conduction within a solvent medium is controlled by a host of generally nonlinear and concentration dependent mechanisms.

Donders made extensive, although primitive by modern standards, investigations of the velocity of neurons related to stage 3 propagation. However, he did not differentiate between

conduction velocity and electromagnetic propagation velocity in his non-invasive experiments. His measurements show a "ballpark" similarity to modern measurements.

Newman has provided early data on signal transmission without discriminating between propagation and conduction (and using the later term exclusively) from a clinical perspective. The distances in his chapter XIX require signal projection by myelinated neurons.

9.1.2.2 Ionic velocity in solvents

The discussion of charge flow along the structures of neurons has long been dominated by cartoons rather than more formal diagrams and detailed discussions. The few measured values reported in the biological literature frequently involve indirect measurement over poorly defined paths. Even in the more fundamental physical chemistry literature, the values are frequently extrapolated to infinite dilutions to obtain limiting values. As Barrow has noted, "At higher concentrations, the law of independent migration of the ions fails, and the conductance is really a property of the electrolyte rather than of the individual ions of the electrolyte (page 677)."

Discussions of the velocity of ions in solvents is very complicated. The velocity of ions within gels is even more complicated, and to a large extent does not exist. What little charge transfer occurs within a gel, or even a high concentration solution, is frequently by "hole transfer." Hole transfer is the movement of electrons in a retrograde path where an electron moves from a neutral atom to a nearby ion. The nearby ion thereby becomes a neutral species and the previously neutral atom is now ionic.

Since individual ions do not often exist in solutions, even dilute solutions, the motion of ions along an electrical potential gradient is complicated and frequently a function of multiple nonlinear parameters.

Even determining the electromotive potential (the electrical potential gradient) within an electrolyte is difficult because of the interaction between man-made electrodes and the solutions. It is complicated further by the rapid establishment of boundary layers and conditions near these electrodes. These boundary layers distort the assumed electromotive potential very significantly.

As a result of the above considerations and other factors, Barrow noted, without addressing gels (page 680), "the path of an ion under the influence of an electric field is a slow, devious trek of a cumbersome solvated ion through the interfering solvent molecules. This would be explained also by saying that the electric field that is conveniently applied to a solution is not an overwhelming factor in the affairs of ions. The ions are to be thought of as having only a slight directional component imposed on their random motions."

What can be said is that the transfer of a charge from one electrode to another by ionic conduction does require the presence of the electromotive potential between the two electrodes during the entire interval of charge transit.

[xxx Based on Thomson’s (Lord Kelvin’s) assertion that signals would pass along a submarine cable by his law of diffusion (ionic conduction) and their velocity was a function of the applied potential, the first cable failed when the operators attempted to increase the signal velocity by increasing the applied voltage (to the point the insulation used in the cable failed). See Section 9.1.1.3.1.

9.1.2.3 Ionic velocity in gels

The interior of most axons and axon segments are gels. The parallel homeostatic channels supporting the axons and axon segments are also generally gel filled. As a result of the zero to

very low velocity of ionic flow within gels, axons and axon segments do not employ ionic transport between junction devices (Activa within the neuron, NoR or Synapse) in signal transport. In some cases, the gels are extruded near one junction device and are absorbed near a second junction device. As a result, any ionic elements within the gel may be transported along the axon at velocities measured in millimeters per hour or millimeters per day. Such ionic transport is not related to signaling.

9.1.2.4 Energy propagation along a coaxial cable

9.1.2.4.1 The capacitance of the axon segment

The biology community has long calculated the capacitance of a section of BLM in an overly simplistic manner. They have assumed the capacitance can be calculated using the area of a flat plate having the “nominally” equivalent area as the conduit. The best available data is actually from bilayers formed on the surface of a liquid. These bilayers generally exhibit a capacitance of nominally 6 nanofarads/mm² (6 x 10⁻⁹ farads/mm²) based on Alexander & Fuchs. However, the purpose of these experiments is to determine the precise permittivity of the dielectric, not the capacitance of a specific flat plate capacitor.

This procedure has obscured a feature of a conduit that will become critically important later in this chapter. The cylindrical form of the conduit results in a capacitance that is not given correctly by the above approximation.

The correct formula for the capacitance of a cylindrical dielectric is given by (Kraus, page 75):

\[
\text{Capacitance (in farads/unit length)} = \frac{2 \pi \varepsilon}{\ln(R_o/R_i)} = \frac{2 \pi \varepsilon}{\ln(1 + (R_o - R_i)/R_i)}
\]

If \(\varepsilon \) is in farads/meter, the capacitance is also in farads/meter.

The basic form of the equation is shown as (A) in the following set of equations. For convenience, the above equation can be written as \(24.2 \varepsilon \log(R_o/R_i) \) in \(\mu \text{f/meter} \) where \(\varepsilon_r \) is the relative permittivity of the medium (lemma and myelin combined) and logarithms to the base 10 are used.

While the thickness of the dielectric \(R_o - R_i \) in the second expression is intrinsic to the equation so is the interior diameter \(R_i \) of the dielectric. The latter relationship is lost when using the flat plate approximation. This later relationship is critically important when dealing with “giant axons” as will be seen later.

The calculation of the capacitance associated with the spherical endcaps of the sausage shaped axon segment in the above figure is usually ignored because of the small area involved compared to the area of the cylindrical portion.

The intrinsic collector capacitances of an Activa depends on the size of the Activa. They are very small and difficult to measure. The collector to base and collector to INM capacitances are most important. The bulk of the capacitance associated with the collector is due to the extended area of the unmyelinated portion of the axolemma.

It appears the collector-to-base capacitance has played an important role in the parametric stimulation of the neuron employed by Hodgkin & Huxley. Under some circumstances, it appears the collector-to-emitter capacitance played a significant role in the Hodgkin & Huxley experiments.

It is generally necessary to make a distinction between the capacitances associated with the

9.1.2.4.2 The inductance of the axon segment

While little known and poorly understood, the cylindrical form of the typical axon conduit always exhibits an inductance. The purpose and/or importance of this element has been bewildering to electrophysiologists since at least the 1930s. They were able to measure the inductance of a portion of a conduit but were not able to determine its origin. The origin appears clearly in electromagnetic theory. As noted above, any cylindrical structure consisting of an insulator between two conductors, will exhibit an inductance per unit length—just as it does a capacitance per unit length.

The inductance of a neural conduit is given by the similar equation (Kraus, pg 167):

$$\text{Inductance (in henries/unit length)} = \left(\frac{\mu}{2 \pi}\right) \cdot \ln\left(\frac{R_0}{R_i}\right) = \left(\frac{\mu}{2 \pi}\right) \cdot \ln\left(1 + \frac{R_0 - R_i}{R_i}\right)$$

If μ is in Henrys/meter, the inductance is also in Henrys/meter. The permeability of a vacuum is $4\pi \cdot 10^{-7}$ Henry/meter. The permeability of water and other biological materials is nominally equal to the permeability of vacuum and the relative permeability of biological materials, μ_r, is equal to 1.0.

As in the capacitance of a coaxial line, the thickness of the lemma plus the myelination is given by $R_0 - R_i$ and the inner radius, R_i, of the axoplasm is significant.

This inductance plays a critical role in the propagation of signals over what will be defined as stage 3 neurons, those transmitting action potentials over distances greater than two millimeters.

The role of the inductance and capacitance in the typical axon segment of stage 3 is so important, the segment even exhibits secondary features to optimize the inductance per unit length in accordance with good electrical filter design.

The axon, like the real submarine cable is not represented by only resistive and capacitive elements. Any coaxial transmission line exhibits an inductance under transient conditions. The value of this inductance per unit length is a function of the geometry of the cable and the permeability of the dielectric medium. The equation for this inductance is (B) in the following set where r_o is the outside radius and r_i is the inside radius of the dielectric.

The presence of an inductance associated with the giant axon of *Loligo* was extensively documented by Cole. However, he did not associate that inductance with a cable. Instead, he associated two inductances with the h and n parameters and an additional capacitance with the m parameter of the equations and equivalent circuit of Hodgkin & Huxley. He diagramed them as parallel circuits in their shunt circuit diagram (pg 299). Cole notes that: “Every element of the circuit, except the membrane capacity C, changes with the potential difference across the membrane.” As a result, the symbols used should not be interpreted as associated with fixed circuit elements.

Any coaxial transmission line also exhibits a capacitance under transient conditions. The value of this capacitance per unit length is a function of the geometry of the cable and the
34 Neurons & the Nervous System

permeability of the dielectric medium. It is not found by using the flat plat equivalent area of the dielectric. The equation for the capacitance per unit length of an axon is (A) in the following set of equations where ε is the permittivity of the dielectric.

$$C = \frac{2\pi \varepsilon}{\ln \left(\frac{r_o}{r_i} \right)} \quad (A)$$

$$L = \frac{\mu}{2\pi} \ln \left(\frac{r_o}{r_i} \right) \quad (B)$$

$$v_p = \pm \frac{1}{\sqrt{L \cdot C}} = \pm \frac{1}{\sqrt{\mu \cdot \varepsilon}} = \pm \frac{c}{\sqrt{\varepsilon_r}} \quad (C)$$

$$Z_o = \pm \frac{L}{\sqrt{C}} = \pm \ln \frac{r_o}{r_i} \sqrt{\frac{\mu}{4 \pi^2 \cdot \varepsilon}} \quad (D)$$

3 Impedances of an ideal axon based on its outer and inner radii.

Figure 9.1.2-1 presents the calculated value for these impedances for various size axons. The values are for both unmyelinated and myelinated neurons based on the membrane dimensions and for a permittivity assumed to be equal to 3.0 for discussion. As calculated, 100 layers of membrane causes a change in capacitance of about 12:1. Note the significant change in these values as a function of axon radius. The unmyelinated values shown intersecting the gray bar are typical of the values to be expected in the experiments of Hodgkin & Huxley. These values are clearly not typical of the 1-5 micron radius applicable to stage 3 projection neurons in Chordata.

Chiu & Ritchie measured the capacitance of normal and unmyelinated axonal segments in mammals (rabbits). Although they did not provide the radius or length of their segments, they described an increase of 20 ± 2.6 times in the capacitance after demyelination from an initial total value of 3 ± 1.2 pF. The capacitance ratio of 20:1 would suggest a myelination consisting of about 150–200 BLM layers in their specimen.

Figure 9.1.2-1 The capacitance and inductance of an ideal axon segment. R = G = 0. The vertical gray bar represents the radius of the typical Loligo axon without surrounding tissue.

9.1.2.5 The impedance & phase velocity of the ideal coaxial cable EDIT
Figure 9.1.2-2 shows the characteristic impedance, Z_0, of an ideal axon segment based on equation (D). A major problem with using the giant axon of Loligo is seen immediately. The characteristic impedance of that size axon is very low. As a result, it is extremely difficult for the conexus of the neuron to excite it. While it can support the transmission of a signal by diffusion, it may not be able to support it by propagation. While the giant neuron of Loligo makes a good signal processing (stage 2) neuron, it makes a very poor stage 3 signal propagation neuron. The giant axon of Loligo is not analogous to the stage 3 propagation neurons found in Chordata.

The propagation velocities shown in the figure represent ideal transmission lines with various values of dielectric constant at the top and estimates associated with lossy lines such as a real axon. The latter will be discussed in greater detail below.

Figure 9.1.2-2 The characteristic impedance and phase velocity along an axon. Top, an ideal axon segment. $R = G = 0$. The phase velocity does not vary significantly for typical biological dielectrics. The estimated values are for a real axon where R is finite but $G = 0$. The vertical gray bar represents the radius of the typical axon of Loligo.
Equation 2(C) shows that an ideal axon with a dielectric constant of 3.00 has a transmission velocity of \((1/3)^{0.5}\) that of the speed of light or about \(17 \times 10^8\) meters/sec. This extremely high value is not compatible with the values found in the literature for signals flowing from one end of a neuron to the other, or even along a single axon segment. This fact suggests that the axon segment is not an ideal axon and that its series resistance and shunt conductance must be considered more carefully. However, the form of equation 2(C) shows why a signal impressed in the middle of an axon segment is propagated in both the positive and negative directions along the segment. There are two values for the function. One travels to the right and one travels to the left. It also shows a significant variation in the velocity of propagation as a function of frequency. Like a simple RC filter network, the ideal axon exhibits a significant variation in the velocity of a sine wave traveling along an axon as a function of frequency.

The equations for the velocity of a wave traveling through a lossy axon segment (coaxial cable) are quite complex but readily available in textbooks. They show that the velocity is slowed considerably as a function of the frequency and of the series resistance and shunt conductance. In the case of the real axon, the specific resistance, e.g. resistivity, of both the axoplasm and the INM are reported to be on the order of 110 Ohm-cm. This compares with a value of \(1.7 \times 10^6\) Ohm-sm for copper wire. Such a high resistivity has a significant effect on the movement of charge within the electrolyte adjacent to the dielectric. Figure 9.1.2-3 shows the typical situation for both an ideal axon (left) and a real axon (right). The left figures are similar to those found in many biology texts, except they have been expanded. They now show the electric field lines between the charges and the magnetic field lines surrounding the fields due to the charge on the inner and outer conductors. With conductor resistivities very small relative to the inductances, all charge is located very close to the walls of the dielectric and it can move along these walls very rapidly. As a result, the propagation velocity of a wave along this cable is a fraction of the speed of light. For a real axon as shown on the right, the situation is different. The resistivity of the plasmas is now far from zero and significant when compared to the inductance of the structure. The electric field lines now enter the plasmas a significant distance and the speed of electrons along these field lines is considerably reduced. As a result, the position of the electrons at any instant is hard to define and the propagation velocity of the wave is considerably reduced. Note the electrical field lines are closed in both the ideal and real axons. There is no net current flow in the direction of propagation. As shown in Section 9.4.2, the nominal propagation (phase) velocity for the wave traveling along an axon segment is 4400 meters/sec (~1.5 \times 10^{-5} times the speed of light).

A phase velocity of 4400 meters/sec is 300 to 1000 times faster than the speeds calculated by Taylor and Hodgkin. For they were trying to make their Kelvin-Hermann based approach agree with the average velocity of a neural signal traveling between two identical points in a Node of Ranvier and axon unit, instead of the phase velocity of an axon segment. The modern models of Taylor and of Hodgkin do not predict the actual phase velocity of an axon segment.

The introduction of an inductance into the model negates all of the equations found in the
biological literature for the coaxial cable representing the biological axon in a stage 3 projection neuron. The mathematical description of a real axon requires solution of the General Wave Equation of Maxwell. The solution of this equation also introduces a concept not found in the lower order Laplace and Poisson equations, the characteristic impedance of the axon (or coaxial line). The value of this impedance plays a crucial role in the efficiency of the axon as a transmission line.

Figure 9.1.2-4 The electrical circuits used to describe an axon (a coaxial cable). (A); the general circuit in unbalanced lumped-parameter form. (B); the same circuit drawn in balanced lumped-parameter form. In efficient cables, the conductive currents passing through the resistive elements are negligible compared to the displacement currents through the inductive and capacitive elements. As a result, a simpler notation is available. (C); the simplified distributed network based on the dominant displacement currents. It forms an efficient propagation medium. (D); the half-section used to terminate either end of the line in (C) based on the component values in (A).

9.1.2.6 Propagation over a lossy coaxial cable—real axon

Cole was the first to report impedance measurements on a variety of neural and muscular tissue. **Figure 9.1.2-5** shows actual impedance measurements by Cole on the squid axon after undefined preparation procedures. Caution should be observed here. It is likely that the preparation changed the effective conductance of the fluid within the axon. The plasma was frequently replaced by sea water to simplify the instrumentation procedure. Such a change would have a significant change in the conductance of the internal fluid. He describes the empirical derivation of the expected impedance on pages 36-37 (without considering any potential inductance) and then notes the considerable consternation in the community when the axon was found to exhibit considerable net positive reactance at low frequencies. Pages 78-79 describe conceptual discussions aimed at avoiding the obvious. The coaxial axon exhibits significant inductance.
Cole presented the data in a non-standard form in his original work. By using conventional filter theory and complex plane plotting conventions (positive reactance at the top), the revised figure can be used to evaluate the nature of the impedance measured on a lossy axon based on conventional filter theory.

The following equations replace equations (C) and (D) in the previous set when the values of the resistance and conductance associated with the coaxial cable or axon are not negligible compared to the inductance and capacitance. Two new equations have been added in this set. An approximate equation for the attenuation along the line and an approximate equation for the phase constant along the line. The exact equations are much more complicated and are not needed here.

![Figure 9.12-5 Measured impedance (inductive & capacitive) of a real axon after unspecified preparation procedures. Replotted from Cole, 1968, and annotated.](image)
Equations of a lossy coaxial cable applicable to an axon

\[\nu_p = \frac{1}{\pm \sqrt{(R + j\omega L) \cdot (G + j\omega C)}} \]
\[Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \]
\[\alpha \approx \frac{R}{2Z_0} + \frac{G \cdot Z_0}{2} \]
\[\beta \approx \omega \sqrt{LC} \left[1 - \frac{RG}{4\omega^2 LC} + \frac{G^2}{8\omega^2 C^2} + \frac{R^2}{8\omega^2 L^2} \right] \]

(A) The interpretation of these equations in a specific application is aided by experience. As a general rule, equation (A) is not used. It is re-written in the form of equations (C) and (D) which are easier to interpret. (C) describes the attenuation constant applicable to the cable. (D) describes the phase shift constant applicable to the cable. A brief theoretical interpretation is provided below. The comparison of the theoretical and measured values for the axon will be presented in Section 10.3.5.4.

9.1.2.6.1 Theoretical intrinsic/phase velocity and attenuation on a lossy line

Equation (A) gives the phase velocity of the signal when the coaxial line exhibits significant resistivity and conductivity. The propagation velocity is dependent on four parameters in a very complex manner. In cases where the resistivity and conductivity dominate, propagation is slowed considerably below the value for the ideal cable. The velocity is given by \(\nu_p = (R \cdot G)^{-0.5} \) for this case (which always occurs at low frequencies). At high frequencies, the velocity is usually given by \(\nu_p = (L \cdot C)^{-0.5} \). At intermediate frequencies, equation (A) is generally written in a different form that allows the separation of the attenuation constant for the cable (C) and the phase constant for the cable (D). The phase constant describes the velocity of propagation as a function of wavelength or frequency. This velocity varies with the wavelength (or frequency) of each Fourier component in the signal. The variation leads to the dispersion of the energy in the original signal with distance along the cable. Dispersion appears to be the principle cause of deterioration in the shape of the action potentials in the neural system. It generally limits the distance between Nodes of Ranvier or other regenerating features to less than two millimeters.

The intrinsic phase velocity of even a lossy axon is much higher than the average velocity of propagation. The average velocity is limited by the significant delay associated with the periodic signal regeneration process (involving Nodes of Ranvier, see Section 9.4).

9.1.2.6.2 Theoretical impedance of a lossy cable

Equation (B) in this set of equations describes the characteristic impedance, \(Z_0 \), of a lossy coaxial cable. This equation can be useful in interpreting the complex impedance plane measurements of Cole. However, it must be noted first that the equation only applies to a transmission line that is terminated at each of its ends using an impedance equal to this characteristic impedance. If the cable is not properly terminated, measurements such as Cole made will depend on the precise position along the axon where they are made. The measured values will reflect this inadequate termination by exhibiting a voltage standing wave ratio, VSWR, along the line. This parameter is an indicator of the error in termination.

In the case of a real axon, the adequacy of the termination is currently unknown. However, a matching filter is usually required between the myelinated portion of the axon and the conexuses at each end of each axon segment. Such a matching filter is usually formed by the unmyelinated section of the axon segment.

The above Cole figure can be annotated using equation (B). At zero angular frequency, the value of the impedance is given by the square root of the ratio of R divided by G. This impedance is purely resistive and is about 10.4 kilohms in the figure. Conversely, at very high frequencies, the value of the impedance is given by the square root of the ratio of L divided by C. This impedance is also purely resistive and is about 6.6 kilohms in the figure. The value of 11.7 kilohms at 260 Hertz is also descriptive of the cable. It is a purely resistive impedance. This resistive value will move toward the characteristic impedance as the terminations are adjusted to optimum. At frequencies below 260 Hz, the cable exhibits a positive reactance. It can be considered to be inductively loaded at this location. At frequencies above 260 Hz, the cable exhibits a negative reactance. It can be considered capacitively loaded at...
9.1.2.6.3 Intrinsic pulse dispersion along a lossy line

Equations (C) and (D) of the above set are also instructive. They are approximations of the attenuation constant, α, and the phase constant, β, of a lossy cable. They describe the distortions in a pulse transmitted along a lossy cable. For the distances of interest in neuroscience, it will be shown that the attenuation constant is not significant. The amplitude of the energy in the Fourier components of the pulse does not diminish significantly over distances of a few millimeters. However, the phase constant is a direct function of the frequency of the Fourier component. This term causes each Fourier component to exhibit a different phase velocity when propagating over a lossy cable. The effect is to smear the shape of the action potential pulse, eventually to the point of unrecognizability. To effect useful signal propagation, the pulse shape must be restored before it reaches this point. This restoration through regeneration is the precise role of the Nodes of Ranvier. They must be placed at sufficiently frequent intervals along an axon to sense the signal accurately and reliably before it falls below the threshold amplitude of the conexus within the Node of Ranvier.

The phase constant, β, associated with a real axon, and represented by a lossy cable, makes one of the several assumptions of Taylor in his analysis of a cable untenable. He made the following assumption (page 226). “If the open circuit potential V_0 does not vary with position on the membrane, we may use as our variable of voltage $V_m - V_0 = V(t)$.” This is clearly not the case within the individual groups of measurements by Smith, et. al. Taylor assumed that the velocity of all components of a pulse waveform traveled at the same velocity in a lossy line. This was also the failing in the original analysis of the undersea cable by Lord Kelvin.

9.1.3 Modeling stage 3 myelinated neuron branch points

Several models of branching neurons have appeared with the advent of inexpensive computational modeling via desktop computers. No realistic models have yet appeared. The past models have been indirectly based on the proposed and unsolved partial differential equations of Hodgkin & Huxley (1948-1952) for a simple giant axon (unmyelinated) of a mollusc (no known stage 3 neurons propagating action potentials). Although not stated explicitly with the set of their equations, their solution also included a set of switching points at which the various differential equations were phased into and out of their conceptual solution. Relying upon this set of unsolved partial differential equations with boundary conditions is unfortunate, since a closed form equation for the operation of the active mechanism associated with every Node of Ranvier (including the one typically embedded in the soma of a stage 3 neuron is readily available (Section 9.xxx).

Zhou et al. and Zhou & Chiu have provided the most explicit description of their model of a branching stage 3 (myelinated) neuron. They followed the interpretation of the Hodgkin & Huxley equations by Halter & Clark of 1991 and 1993. Their figure 1 on the 2001 paper exhibits a number of serious problems with their physiological model (including its tendency to exhibit Amyotrophic Lateral Sclerosis (ALS, Lou Gehrig’s Disease). Their figures 4 and 6 through 9 show an even more serious shortcoming, the failure of their model to maintain pulse train integrity (the very hallmark of, and most needed feature of a pulse encoded signaling system). They show a significant loss of pulse train integrity using their model under a variety of conditions, including very small differences in temperature that could not be avoided in cold-blooded animals and even warm-blooded animals running a significant fever.

The 1991 paper of Halter & Clark speaks of the extent of the axoplasm of an axon segment, “Sealed-end conditions are assumed.” This presents no (conventional) current flow through the terminal longitudinal elements of the end segments. In fact, this work shows the semiconducting properties of the terminal zones of the axon segments allow the transfer of electrical charges but not ionic charges through these terminals. Halter & Clark illustrate and

speak of the coaxial cylinders forming the axon segments (figure 2b) but fail to associated an inductance with such structures. Thus, they only calculate the distributed resistance and capacitance components of their axon segments. They fail to correctly calculate the capacitance per unit length of a cylindrical capacitor. The correct calculation involves the logarithm of the ratio of the outside radius of the insulator to the inside radius of the insulator (see any electrical engineering handbook). Their resulting RC model does not adequately describe the propagation properties of the axons. Interestingly, they note the use of double precision arithmetic in their computations to insure accuracy when the precision of their input parameters and the accuracy of their formulas do not support using double precision arithmetic.

Figure 1A of Zhou & Chiu illustrates a continuous axoplasm passing through a number of axon segments and Nodes of Ranvier before bifurcating into two branch channels. Their figure 1B shows the assumed space between the axolemma of the neuron and the myelin sheath (where the axoplasm appears closed off by the Nodes of Ranvier). The dimensions of their representation are available in the 1993 Halter & Clark paper. No electrical schematic of the combined axon segment and Node of Ranvier is provided in the Zhou & Chiu paper. The equations provided appear to be linear, and directionally symmetrical interpretations of RC networks derived using Kirchoff’s Laws. No inductive terms are included as always required when transmitting alternating current signals along coaxial cables. While their model includes the geometric features of the myelin sheath and the axon segment developed by Rydmark & Berthold in the 1980’s, they do not attempt to interpret these features as constituting a “matching section” of a typical electrical filter based on the filter theory of electrical engineering.

Implementation of a dynamic Node of Ranvier as developed in this work leads to a significantly different model that avoids the problems stated in the previous paragraphs.

9.1.3.1 Comparison of branching models

Figure 9.1.3-1 compares Figure 1A of Zhou & Chiu with an alternate configuration developed based on the above portions of this work. The original variant follows that of Rydmark & Berthold from the 1980’s. It reflects the predominant view from before the days of the electron microscope that the axolemma and axoplasm of a single neuron extended the length of the neuron. This position is not affirmed by modern electron microscopy. The individual axon segments involve fully enclosed axolemma and thereby individual chambers of electrically isolated axoplasm. The areas of closest approach of adjacent axolemma are formed of special semiconducting lipids. They thereby support the formation of an Activia with its base terminal provided access to the surrounding matrix as indicated by the open path at the bottom of each Node of Ranvier. The top of each Node of Ranvier is shown as contiguous between axon segments (but separate from the neural signaling function) in order to support the transfer of nutrients along the length of the axon.

The diameters and lengths of the closed axolemma of each daughter axon segment of frame B need not have any relationship to the dimensions of the parent branch.
Figure 9.13-1 A comparison of branching models of stage 3 myelinated neurons. These neurons support the propagation, not just conduction, of neural signals over long distances. A; the model of Zhou & Chiu (2001) based on an archaic description of the physiology of a stage 3 neuron. B; an alternate model assuming an active semiconductor device (an Activa) present at each Node of Ranvier. Note closed axolemma for each axon segment separated from the adjacent axolemma by an open space with access to the surrounding matrix. Note also the closed axolemma to the right of the branch point. The dimensions of the elements to the right of the branch are inconsequential in the updated variant of frame B. See text.
Figure 9.1.3-2 expands on an earlier figure above to show the branched axon in greater detail. Zhou & Chui modeled their segments at a branch point based on Kirchhoff's Laws for a linear RC network where the sum of the currents at the node equals zero. The resultant model is electrically bidirectional. The current work models the branch point as occurring at a Node of Ranvier containing an Activa (an active semiconductor device that is not electrically bidirectional). The input to the Node is characterized as a voltage and the output of the Activa is also a voltage that can be used to excite any number of subsequent axon segments. The impedance of the collector terminal of the Activa is sufficiently below the impedance of the individual orthodromic axon segments that there is very little electrical cross talk between the orthodromic segments.

The overall circuit is very similar to an active coaxial cable signal splitter of the type frequently used in home TV antenna systems. The splitter box provides one input jack for receiving one input cable, provides a "matching section" for optimizing the voltage level delivered to the amplifier, provides a very low impedance output voltage, and then shares that voltage among multiple "matching section" feeding each of the output cable jacks.

In the immediate vicinity of the terminals of the Node of Ranvier, the circuit operates in the analog mode. The areas marked Z and X (not shown but repeated on each of the daughter axon segments) constitute the matching sections corresponding to the regions labeled MYSA by Rydmark & Berthold (See also Section 9.4). These sections mediate the conversion of the signal to a propagating electro-magnetic wave in the regions labeled Y. It is in these regions that the propagation velocity is on the order of 4400 meters/sec depending on the specific level of myelination described in earlier figures. The propagating signals are shown by the alternating groups of plus and minus signs along the outside of the upper axon segments as discussed earlier. The same patterns have been omitted for convenience on the lower surfaces of the myelinations.
As long as the voltage of a pulse delivered to the input of the Activa exceeds the threshold level for the Node of Ranvier to act as a pulse signal regenerator, a new pulse will be generated (following a finite delay) that will be shared by the daughter axon segments. There is no chance for the introduction of spurious pulses or the absence of pulses (for pulse rates below a nominal 1000 pps as encountered in the computed results for the computational models of Zhou & Chiu.

As noted earlier, the role of the myelination is to decrease the capacitance per unit length and increase the inductance per unit length of each axon segment in order to achieve a unique electrical condition. If the myelination is not wrapped tightly around the axolemma to prevent any fluid from the external matrix entering the space between these two elements, the impedances seen by the axoplasm will not be modified, an electromagnetic wave will not be propagated along the myelination and the neuron will fail to operate properly. When observed in the clinic, such a nerve will be described as exhibiting ALS (Lou Gehrig’s disease).

The above network can be shown in a more condensed form using Figure 9.1.1-2 as a template. The distributed character of the parameters associated with the myelination is stressed in this notation.

9.2 The fundamental encoding neuron, the pyramid or ganglion neuron or hemi-node

Figure 9.2.1-1 shows the morphology of a nominal stage 3 encoding neuron as found in mammals, in the cortex incorporated into either an association neuron or a commissure, or in the PNS as a projection neuron. The stage 3 portion of the neuron extends from the Activa within the hillock of the soma to the extreme of the axon segments and the last Node of Ranvier. It operates in the phasic mode. The analog portion of the neuron (technically part of either stage 2, 4, 5 or 6) includes the extensively arborized dendritic structure and potentially the similarly arborized podite structure. If both neurites are arborized, the neuron is labeled bi-stratified.

Morphologically, the stage 3 ganglion neuron is frequently labeled a pyramid cell, particularly when it is found in the receptive layers (laminae 5 & 6) of the CNS tissue. In the retina, the encoding neuron has traditionally been described as a ganglion neuron.

The figure is not to scale, the total length of the axon can vary from about 2 mm to a maximum approaching the longest dimension of the limbs or spinal chord of the host animal. Lengths of two meters are not uncommon in the larger animals. These figures are typically prepared using a camera lucida and the details recorded depend on the artist, or their instructions. In this figure, the spines covering the dendrites are clearly shown, those of the podite arborization less clearly. No effort has been made to document the location and/or size of the soma containing the active Activa. Similarly, the artists has stressed the axolets at the end of the axon but has omitted showing the Nodes of Ranvier located periodically along the length of the axon, alternating with myelinated axon segments. The axolets are typically found beyond the last Node of Ranvier and the associated impedance converting the axon current to a pedicle voltage. The axolets all exhibit a similar, if not identical, voltage that are applied to the various synapses with other neurons.
The journal literature and the internet contain an endless range of discussions concerning the decoding of the neural code. Many of these are based more on philosophy than neuroscience. They are seldom accompanied by a definition of the term code. It is frequently used by psychologists in a totally abstract sense. Many of these papers are introductory presentations by lower level academicians to naive students. Assertions are frequently made that the neural code is probabilistic, is Bayesian, or involves a "rate" code. None of these assertions is factual.

In fact, the neural code used in actual signaling has already been decoded and described in significant detail. It is important to recognize neural signaling occurs in both the analog and pulse domains. Both the analog and pulse neural codes are totally deterministic.

The pulse neural code is more sophisticated than a simple rate code. A rate code requires multiple pulses to establish a rate (a frequency in pulses per second). The pulse neural code is a place code. A single pulse (action potential) carries information on the time of initial stimulation in the place code used in the neural system. In electrical engineering terminology, the place code is a phase code and not a frequency or rate code. The phase code used in the neural system is well known and has been used in telemetry systems for many decades (beginning in the late 1940's (See IRIG code in Section 9.3.1). It is also described as a time-delay type of pulse position code. This time-delay code is particularly easy to generate and decode by simple neural circuits.

As will be introduced in Section 9.3.1 and discussed in Section 15.6.8.3, the "neural code" of biology is actually used in two distinct formats, a word serial/bit serial format primarily in the PNS and a word serial/bit parallel format primarily among the cognitive engines of the CNS. The physiological circuits employed are the same in each but the architecture of those circuits is different.

The literal neural code used in the PNS is directly relatable to the physical parameters of the stimulus. In the case of the visual modality, the code is primarily associated with the intensity of a specific sensory neuron, or the difference between two types of sensory neurons at a similar location in the field of view.

The operation of the literal neural code of the PNS is well understood and will be discussed in this chapter. The operation of the symbolic neural code of the CNS is currently a total mystery and will only be discussed in Section 15.6.8.3 at this time.

The following material related to the literal neural code is broken into five sections:
48 Neurons & the Nervous System

Background required to understand the origin of the place code
The Operation of the coding ganglion neurons
The neural place code used in monopolar amplitude encoding pathways
The neural code used in bipolar amplitude encoding pathways
The transfer function of ganglion neurons used in these pathways

9.2.1 Background

Discovering and elucidating the literal neural code of biology requires;

- a clear understanding of the physiology of the nervous system
- attention to the definition of the terms involved
- familiarity with the encoding approaches used in man-made telemetry and communications systems.

Based on these requirements, it can be shown that;

- the desire for linear encoding within the neural system is operationally unjustified
- both analog and phasic signal coding are used within the neural system
- the neural code of the literature usually refers to the phasic coding (action potentials)
- the analog coding prior to encoding of the analog information is critically important and usually ignored
- failure to recognize the analog coding prevents precise interpretation of the phasic coding
- the phasic neural code occurs in two distinct forms:
 - that associated with unidirectional analog signals
 - that associated with bidirectional analog signals

9.2.1.1 The Visual Modality as an exemplar of the neural system

The visual modality provides a comprehensive, and well understood, exemplar of the neural system. The modality makes effective use of analog signal processing between the stimulus and the phasic encoding circuits and additional signal manipulation following phasic signal decoding. Figure 9.2.1-2 shows a generic neural system in the PNS labeled to represent the visual modality. The operation of this portion of the visual modality is well described in the author’s work, “Processes in Biological Vision” and will not be repeated here except in overview.

![Fundamental circuit topology of the retina as an exemplar](image_url)

Figure 9.2.1-2 Fundamental circuit topology of the retina as an exemplar. The figure includes the stage 1 sensory receptors (accessing information at different wavelengths), multiple stage 2 signal processing paths (including the convergence of many stage 1 paths on stage 2 circuits associated with the peripheral retina, and similar stage 2 signal convergence at the ganglion neurons). In both converging situations, bandwidth shaping of the analog communications channel may also occur prior to encoding of the signals by the stage 3A encoding neurons.
The figure shows the unique elements in the two types of fundamental paths through the foveola of the retina. The path through the morphologically labeled bipolar neuron is a non-inverting signal path leading directly to the optic nerve. The signal is monopolar in the sense it never reverses polarity relative to the quiescent potential of the axon. The path through the morphologically labeled horizontal neuron is a differencing signal path wherein one of the signals is inverted while the other is not. The resulting signal at the axon is bipolar with respect to the quiescent value of the axon potential.

The paths through the peripheral retina generally involve additional summations as shown by the dashed lines in the figure. Such signals frequently lead to a discussion of converging signal paths within the neural system. While important, this additional processing tends to complicate the operation of the system and reduce the spatial resolution of the retina (essentially tracking the reduced spatial resolution of the optical system.

9.2.2 Historical nomenclature problems

The historical nomenclature based on morphology is awkward. The morphological bipolar neuron has an output (and input) that are electrolytically monopolar. Conversely, the morphological horizontal neurons have multiple inputs that are individually monopolar but an output that is electrolytically bipolar. In both cases, the neurons are in fact three-terminal circuits incorporating a three-terminal Activa.

The historically labeled parasol neurons (frequently labeled pc for parasol cell) connect to the magnacellular pathway (frequently labeled mc), while the midget neurons (frequently labeled mc for midget cells) connect to the parvocellular pathway (frequently labeled pc). The terms magnocellular and parvocellular are morphological labels associated with the size of the neuron targeted within the lateral geniculate nucleus (LGN). The abbreviation PC is also used for the Pacinian corpuscle of the somatosensory modality.

It has also been found that some stage 3 auditory neurons have their soma displaced to a less crowded area of the cochlea than their analog to pulse encoding mechanism. The result is a stage 3A encoding mechanism separating an unmyelinated neurite feature from the myelinated axon feature. This configuration has been labeled a hemi-node in the morphology of the somatosensory neurons where the configuration is also found (Sections 8.8.4 & 8.8.5). Thus, the stage 3A encoding function typically found within the soma of a ganglion neuron or some pyramid neurons may be found as a stand alone feature in other applications.

9.2.3 The neural coding ganglion neurons

The encoding neurons of biology are described here functionally (and electrolytically) as ganglion neurons. These neurons all exhibit a common internal electrolytic circuit that can be biased into either of two conditions. Those ganglion neurons processing monopolar signals are biased to operate as driven monopulse oscillators. Those ganglion neurons processing bipolar signals are biased to operate as free-running monopulse oscillators. Both types of oscillators generate a phasic pulse exhibiting only one stable (rest state). They do not exhibit two stable states as in binary encoding circuits. As a result, their output is optimized for signal propagation. Their output is not suitable for shift register operations or other binary pulse signal processing. Figure 9.2.3-1 shows the operation of the generic stage 3A encoding neuron as it generates a single action potential.

Frame (a) of the following figure illustrates the electrolytic circuitry of the ganglion neuron using standard electronic symbology. It is an expansion of the circuitry shown in the previous page of this subject set. Every ganglion neuron contains an active electrolytic device (within the circle) known as an Activa.

As indicated, the ganglion neuron operates with a negative voltage (Vcc, nominally –154 mV) applied to the axon terminal of the Activa. The Activa is a three terminal PNP type junction device in electrical engineering terminology. The dendritic terminal of the Activa is known as the emitter (E), the podritic terminal is known as the base (B), and the axon terminal is known as the collector (C). In electrical terminology, a conventional signal current flows from the emitter (more positive relative to the base) terminal to the collector (more negative relative to the
50 Neurons & the Nervous System

(base) terminal of the Activa when the device is in its active mode.

Notice the serial combination of the two parallel circuits, Z & C_z of the preceding synapse and R_s & C of the dendritic circuit. These elements form a lead-lag network in electrical engineering terminology. Their precise values can significantly affect the shape of the leading edge of the voltage pulse supplied to the emitter terminal of the Activa.

The operation of the ganglion neuron is critically dependent on the feedback impedance (R_b) connected between the base terminal of the Activa and the external poditic terminal of the neuron. This impedance provides internal positive feedback between the axon circuit and the dendritic circuit. This feedback causes the emitter circuit to exhibit a negative impedance characteristic (a region of the curve slopes downward to the right) as shown in frame (b). As a result, the overall circuit can be made to oscillate in a variety of ways.

![Diagram of the ganglion neuron encoding circuit and waveforms](image)

Figure 9.2.3-1 The topology, operation and waveforms of the ganglion encoding neuron. (a); the nominal stage 3A encoding circuit with the first myelinated axon segment shown. (b); the operating characteristic of the input circuit (V_{en} vs I_e). (c); the middle waveform shows the input circuit potential waveform (V vs t). The upper waveform shows the resulting current through the Activa as a function of time (I_e vs t). The lower waveform shows the resulting voltage on the collector of the Activa (the action potential associated with the axoplasm). Segment 3-4 represents the depolarization of the axoplasm via the Activa. Segment 5-1 represents the repolarization of the axoplasm via the power supply, V_{cc}, and the load impedance, R_L. t_a represents the attack time for the action potential. t_d represents the decay time of the action potential.
In the case of the monostable parasol ganglion neuron, the method of choice is for the oscillation to be controlled by the dendrite capacitance, C, and for the dendrite bias voltage (V_{ee}) to be only slightly more negative than the voltage across the feedback resistance, R_b. In the absence of any stimulus via the synapse, the circuit is quiescent at point 5. Making the emitter more positive by ΔV_{en} causes the circuit to be unstable and the current, I_e, to immediately increase to its saturation value as shown in both frames (b) and (c). I_e decreases along the transfer function to point 4 where it immediately jumps to point 5. It then proceeds slowly back to the quiescent level at point 1 (or point 2 if the stimulus from the synapse is still present).

The upper graph of frame (c) shows the current flow into (I_s) and out (I_e) of capacitor C. The middle graph of frame (c) shows complete waveform of V_{en}. The lower graph shows the voltage (V_C) at the collector, or axon terminal. The rising portion of the collector voltage is due to the current through the Activa ($I_c = I_e$) charging the capacitor, C_L. The precise shape of this current is controlled by the lead-lag network described above. To the extent the collector current, I_c, is of constant amplitude, the slope of the collector voltage waveform is a straight line between points 3 and 4. In general, it is not an exponential waveform and the time constant, t_v, is only an approximation. However, the time constant, t_v is a proper parameter of the collector voltage decay characteristic.

During the interval from point 5 to point 1, the neuron is in the refractory state. It takes a larger stimulus to raise the voltage V_{en} to the threshold voltage value of point 2.

The action potentials generated by the ganglion neuron are highly asymmetrical and their time constants are very temperature sensitive. Section 7.3.2 of “Processes in Biological Hearing” illustrate these sensitivities using excellent data from Schwarz & Eikhof. It is important to note that Schwarz & Eikhof did not model the entire signal at the output of the stage 3 neurons (see caption to their figure 2). They only modeled the portion in the “phasic range,” the range from 2 to 5, in the previous and following figure, based on the chemical neuron hypothesis. The complete range from 1 to 5 and back to 1 has never been modeled in its entirety using the chemical neuron hypothesis. Their figure 3 is almost identical to frame (b) of the above figure, except for their extrapolated “leakage current” that does not exist under the electrolytic hypothesis. Their sodium current is the conventional euphemism for the discharge (electron) current through the Activa during the attack portion of the action potential waveform. Note their equation used to fit their measured data did not include temperature as a parameter. Thus, they had to develop different values for each parameter to satisfy the data sets at different temperatures. Calculating and compensating for these variations in parameters occupied a majority of their paper. Such calculations are not required using the more complete equations of the electrolytic theory that include temperature as an extrinsic variable. Those equations show the temperature effect is different for the attack and recovery portions of the action potential waveform (Sections 2.8.4 & 2.9.2).

The ganglion neuron is a switching-type oscillator. The currents and equations leading to the attack portion of the output circuit waveform are different from those leading to the decay portion of the circuit. The basic assumption by Hodgkin & Huxley that the waveform is based on a single set of equations between point 3 and point 1 is in error.

An increasing positive potential to the dendritic terminal relative to the poditic terminal, or to the external neural environment (or matrix), constitutes a larger stimulus to such a device. Figure 9.23-2 from Berry & Pentreath shows the result of stimulating the dendroplasm with a large step function. The numbers correlate with those in the figure above.

The excitation was a square wave beginning at a very negative artificial bias level. The voltage of the dendroplasm rises vertically in the high impedance region below cutoff. Upon reaching cutoff, the dendroplasm potential rises rapidly, due to the lower impedance of the Active in the active regime, until it reaches the phasic threshold. Above the threshold, the circuit enters the phasic or oscillatory regime. An action potential is immediately generated, and the dendroplasm is discharged back to the cutoff potential. If the stimulus remains above cutoff, the cycle repeats itself and another action potential is generated. The time between the stimulus driving the dendroplasm potential above cutoff and the threshold is reached is indicative of the strength of the stimulus. The closeness of the early action potentials suggests the input circuit incorporates a lead-lag network arranged as a pre-emphasis circuit.

If the bias of the dendroplasm of the ganglion neuron is at the cutoff level, the circuit will be much more sensitive to small stimuli. The first action potential will be generated as soon as the dendroplasm potential (the integral of the stimulus above the cutoff level) reaches the threshold value. Subsequent pulses will be generated at time intervals determined by the integral of the stimulus following the first pulse. Thus, the pulse interval will shrink for higher stimulus levels and expand for lower stimulus levels. See the following section on the transfer function of the ganglion neuron.

The output signal of such a device, in response to a positive going stimulus, is a positive going waveform of about 100 mV amplitude, relative to the quiescent axon potential of about -154 mV.

It is clearly seen that the output of the ganglion neurons is totally deterministic. They represent a state-variable circuit, whose output is totally defined relative to their input signal. They exhibit a refractory period that is typically unimportant in their in-vivo application since the input signal is typically band limited by the preceding circuitry.

Crill has provided excellent waveforms, both static and dynamic, showing the generation of action potentials by the mechanism described above. He employs TTX to destroy the feedback necessary to create action potentials by neural circuits. He used layer V pyramidal cells from rat. While employing the euphemism "sodium currents," his instrumentation reports voltages and currents.

9.2.4 The SERAPE representation of nonlinear circuits

It is difficult to describe the operation of a complete nonlinear circuit using a simple schematic, particularly if it is important to interpret both the normal (in-vivo) and frequently abnormal (in-vitro) operation of the circuit. The stimulation applied in-vitro is not only abnormal in stimulation characteristics but frequently in point of application. An alternate representation, christened

Signal Transmission 9- 53

a Serape, is often used in engineering to combine the basic schematic with a set of waveforms keyed to specific nodes within the schematic. It can be used to describe both of the above situations; the in-vivo and necessarily orthodromic stimulation, and the in-vitro (and frequently parametric stimulation) in detail.

While presenting considerable information in a single figure, use of the serape format as shown in Figure 9.2.4-1, unifies our understanding of a neuron under either orthodromic or parametric stimulation via the axoplasm.

The serape- This figure introduces a graphic approach much used in describing non-linear and switching type circuits in electrical engineering, the circuit serape. The approach allows discussing features of circuit operation unexplainable using linear circuit techniques, except through division of the circuit operation into separate and distinct time intervals. It combines a circuit diagram on the left with a set of waveforms on the right as a function of time. The thin dashed lines are used to interconnect features of the two frames, nodes on the left and individual node waveforms on the right.

The circuit portion of the figure is drawn with an unconventional orientation to allow a positive potential at the top in the waveform portion of the figure. The resulting action potentials appear conventional in this graphic.

The serape approach is particularly appropriate for any multiple-probe patch clamp oriented electrophysiology laboratory investigations, such as those of Tolias at Baylor College of Medicine (atolias@cns.bcm.edu). Each of the waveforms can be associated with a specific probe.

If needed, a second orthodromic stimulation could be introduced into the podite circuit without difficulty. A key feature of this circuit diagram is the axoplasm-to-dendroplasm capacitance, C_{AD}, shown to the immediate right of the neuron for clarity but actually an integral portion of the neuron. The operation of the circuit is critically dependent on the values of the podoplasm and dendroplasm impedances, the quiescent dendrite to podite potential, and the load line of the overall circuit (See Section 2.2.4).

As shown on the right, the circuit is in its quiescent state prior to the injection of a long current pulse into the axoplasm parametrically at time zero.

It is important to distinguish between an impulse, a stimulus that lasts for an interval shorter than any time constant in the circuit under evaluation, and a pulse that lasts significantly longer than any time constant in the circuit. Impulse stimulation allows characterization of the circuit elements (only in the absence of any active amplifier elements). Pulse stimulation allows characterization of the circuit elements, whether it includes active amplifier elements or not.

The circuit is not biased as a typical stage 3 signal encoding neuron, of either the midget or parasol ganglion type. It is biased as a typical stage 2 or stage 4 neuron, with an electron current passing from the axoplasm to the podoplasm, through the Activa, continuously. The conventional current, consisting of imaginary positive charges, passes from the podaplasm through the Activa and into the axoplasm. This imaginary current is the one Hodgkin & Huxley associated with the “inward current” that was later described by the euphemistic term “sodium current.”
Upon application of a conventional step current pulse at time zero (electrons are actually withdrawn from the axoplasm), the axoplasm potential becomes more positive. If the pulse is large enough, it dominates any current flowing from the battery V_{AA} and the compensating electron current flowing into the Activa. If the pulse is of constant amplitude, the potential on the axolemma capacitor, C_A, increases linearly as shown. Because of the Capacitances C_{AD} and C_D in series, the potential of the dendrite increases proportionately. When the dendrite to podite potential exceeds the circuit threshold, the internal feedback gain exceeds 1.00 and the circuit begins monopulse generation. The potential of the axoplasm becomes more positive and the potential of the podaplasm becomes more negative very rapidly. The dendroplasm becomes more positive as well due to the above capacitive coupling. The rise in axoplasm potential is virtually linear until the axoplasm to podaplasm potential approaches Activa saturation at about 20 mV. This linear rise is labeled phase 0 by a clinical electrophysiologist. During phase 0, the electron current flowing into the Activa is limited by the current capacity of the Activa. The differential equation describing the axoplasm potential during this phase is dominated by this maximum capacity Activa collector current and is particularly simple. It is the integral of the maximum current capacity of the Activa times dt divided by the axolemma capacitance. The resulting axoplasm potential departs from the quiescent level abruptly, although a second order departure is usually reported because of the bandwidth limitation of the potential recording test instrumentation.
At saturation, the axoplasm potential plateaus at +31 mV, the current through the Axiva falls to zero, the podoplasm potential falls toward the original quiescent condition the internal feedback gain falls to near zero, and the circuit switches to the axoplasm discharge mode. When the dendrite to podite potential falls below the threshold value, due to the time constant T_o, the circuit enters phase 3. Phase 3 is dominated by the electrotonic power supply circuit which is actually a second order filter in most cases. As a result a negative going overshoot is encountered extending to -68 mV before settling to the new stable value of -58 mV during the remainder of the stimulus pulse.

During much of this terminal period, the potential difference between the dendroplasm and the podoplasm is held below the original quiescent difference, resulting in what is generally described as the refractory period (a period during which a larger than normal change in stimulus height is needed to initiate another monopulse).

It is important to note the duration of the monopulse formed by the circuit investigated by Armstrong and by Hodgkin & Huxley much earlier, is much longer than that normally recorded for in-vivo action potentials (on the order of 10 to 15 ms compared to real action potentials of 1-2 ms). This is partly due to the low fixed temperature of a given experiment (temperature of 6-8 Celsius maintained to an accuracy of ±0.1 Celsius in the case of Armstrong). It is partly due to the fact the neurons they tested were not stage 3 neurons of class 1 or class 2 as defined by Hodgkin and reiterated above by Clay and this work. As noted above the squid Loligo giant axon is basically a specialized locomotion muscle timing generator neuron.

The delay prior to the beginning of the monopulse response, and the time to reach peak response after the start of the parametric stimulus, are obvious.

The potentials given in the above figure are not typical of stage 3 action potential generators (encoding ganglia) or regenerators (Nodes of Ranvier). These circuits do not use a poda supply and are normally biased to cutoff (~–154 mV) during quiescence. The pulse peaks at about ~–30 mV in these circuits in vivo.

The voltage waveform at the base (poditic) terminal measured across the impedance, R_p, is the S potential of Bishop and colleagues discussed in Section 2.6.2. The waveform is described in greater detail in that section. In Armstrong's 2008 paper, the waveform labeled I_g + I_{Na} is clearly the S potential measured across an unspecified resistance. His waveform labeled I_{Na} and reduced by a factor of 20, is clearly the action potential generated at the pedicle of his neuron.

9.2.4.1 Refractory period-theory vs measured data.

The above serape representation can be validated using data for the refractory period of a real neuron using abnormal stimulation. Newman52 has provided the relevant data from the sciatic nerve of a frog in Figure 9.2.4-2 using a stimulation described as a compound action potential test (stimulation by two pulses at less than in-vivo separation). The resulting waveforms clearly support the refractory period described in the above figure. As E_p – E_C (approximately E_p – E_d) decays toward the threshold value, the amplitude of the stimulus required decreases and the amplitude of the second action potential increases. Unfortunately, the temperature at which the data was collected was not specified. By the length of the time intervals, it appears the temperature was quite low, probably near 20C.

The waveforms shown in the literature are inconsistent with regard to the pulse polarity that must be applied to the axoplasm to cause the illustrated response. [xxx provide references to H&H and to Cole—possibly starzak figure also] This difference strongly suggests a difference in the prepared specimens. Looking at the circuit of the Activa along with the capacitances between the collector and the emitter and base, these differences can be understood. If the dominant circuit involves the capacitance associated with the emitter terminal, an excitation with the same polarity as the response would be expected. However, if the dominant circuit involves the capacitance associated with the base, an excitation with a polarity opposite to the response is to be expected. Both of these parasitic circuits have a time constant.

Armstrong (2008) has provided new waveforms that appear to describe his results clearly. Unfortunately, he tries to interpret them in terms of a chemical theory of the neuron. As a result, he includes a long section on “Research Questions” not answered within his discussion. After more than 60 years of investigation, he includes the following statement in 2008, “Much remains unknown about the Na⁺ channel” required by his chemical analogy to neuron operation.

Armstrong’s results appear to be compatible with the operation of the switching type monopulse oscillator as described in Section 2.6.2 of “The Neuron & Neural System: A 21st Century Paradigm.”

9.3 The actual codes used in signal propagation

There has long been a debate as to whether the action potential pulses are deterministic or probabilistic in character. As van Drongelen noted, the electrophysiologist easily demonstrates the action potentials are deterministic following their stimulation. However, the neurophysiologists have routinely asserted the action potentials are probabilistic because they cannot achieve repeatable results in their experiments. The difference is clearly due to their inadequate understanding of the circuits within a stage 3 neuron. The stage 3 neuron is completely capable of incorporating a lead lag network of sufficient complexity prior to the pulse generating Activa to cause the problems encountered by the neurophysiologist.

As an aside, the conceptual sketch of a nerve fiber in figure 14.1 of van Drongelen shows he does not appreciate that there is no “vertical” membrane current through the axon segment of a stage 3 myelinated neuron.

Bershadskii has recently provided a series of papers describing the in-vitro operation of selected neurons operate in a chaotic (deterministic via a complex function) model\(^5\). He suggests his neurons are excited by random noise. He did not show the actual output waveforms of any neuron but made computations based on a correlation function ostensibly representing a series of action potentials recorded in-vitro. Although noting the nominally equal height of the action potentials from a single neuron in-vivo, he did not indicate the amplitude for his action potentials. Specifying this height is critically important in determining whether a pulse stream is a real set of action potentials from a stage 3 neuron or merely the result of forced oscillation in a neuron due to an intentional or incidental bias change associated with the probe protocol.

Wikipedia provides a nice brief overview of the correlation function and its variants. Although unsigned, the material does reference a recent text\(^57\). It does develop the inconsistency of notation among scientific disciplines at even this late date. “Different fields of study define autocorrelation differently, and not all of these definitions are equivalent. In some fields, the term is used interchangeably with autocovariance.”

Much of what Bershadskii asserts is correct from a mathematical perspective. However, he is unable to show that his responses are valid under in-vivo situations or to describe the actual limitations on the application of his findings. He did not address the actual encoding algorithm of the neural system although his results are compatible with the neural algorithm. This algorithm is developed below. His correlation function suggests his neuron was synchronously excited rather than by a random input. It exhibits an initial pulse followed by a long tail with a ripple suggestive of the presence of a harmonic component (probably due to the nonlinear mechanisms present).

This section will describe the phasic code actually used in the stage 3 neural system and how the information encoded by the ganglion neuron can be recovered by a stellate neuron, including a series of examples demonstrating the solution to the above neurophysiologists’ problems.

9.3.1 The Neural Code used in the magnacellular (brightness) and other monopolar pathways

The optimum parasol type (monopolar input) ganglion neuron should show maximum sensitivity to stimuli without introducing significant noise into the neural pathway. This condition calls for the quiescent emitter (dendrite) voltage, \(V_{\text{en(quiet)}}\), to be more negative than but as close as practical to the cutoff voltage labeled point 2. This maximizes the dynamic range available for the signal, between cutoff and saturation and accepts the generation of an occasional extraneous action potential due to analog noise.

The pulse train(s) generated by parasol type (monopolar input) ganglion neurons are described in the engineering literature as representing time-delay encoding or modulation. This type of modulation is characterized by packing more information into a given signal space than nearly any other form of modulation. Time-delay encoding is a more sophisticated form than a simple rate-based code. It is a place code. Time-delay encoding generates an initial pulse that occurs earlier the more intense the stimulus. Subsequent pulses occur closer together for higher intensity stimuli, as in rate-based coding.

\(^{56}\)Bershadskii A. (2010 Broken chaotic clocks of brain neurons and depression \(\text{http://arxiv.org/abs/1012.1611v2}\)

The time-delay code used in the neural system is a (temporal) place code and not a rate code. The time of occurrence of the first pulse is relevant and provides important information related to the intensity of the stimulus. The time interval before the next pulse is linearly proportional to the stimulus amplitude during the that interval. The reciprocal of this interval, the pulse rate, is not linearly related to the stimulus and is in fact asymptotic.

If the lead-lag network of a ganglion neuron creates a flat frequency pass band from the sensory neuron to the ganglion Activa, the first action potential departs from its quiescent level immediately upon the input exceeding the threshold level of the circuit. This initial pulse is used as an alarm mode signal in the subsequent circuits of stage 4. Subsequent pulses occur with a decrease in time delay that is linearly proportional to the amplitude of the stimulus above threshold.

In typical laboratory experiments, the probe impedance is usually many megohms (compared to the synapse impedance of about 0.25 megohms (Hearing, figure 3.6.2-1). As a result, parametric excitation of a ganglion neurons usually employs a constant current source that charges the input capacitor, C. The result is an emitter to ground voltage that is a linear ramp up to the threshold level. The capacitor is discharged during the pulse interval and the ramp begins again. This is the condition seen between points 5 and 2 in the above dendrite potential waveforms.

More details related to time-delay modulation in monopolar neural circuits can be found in Section 14.2.2 of "Processes in Biological Vision." If care is taken in experiment design, it is possible to ensure a simple bandlimited step input to the encoding portion of the stage 3 ganglion neuron(s) associated with monopolar signals (such as brightness). The absolute voltage levels relative to the neural matrix and the polarity of the step are significant. The transient performance will vary with this polarity.

9.3.1.1 The IRIG description of the code

The code used in monopolar neural signaling was categorized by the Inter Range Instrumentation Group (IRIG, a for-runner of NASA) during the 1950's in Standard 106-96. The monostable pulse stream is described as a return-to-zero (RZ) type of code. It is described as an analog representation in the pulse domain of an analog signal. The actual time-delay code is described as a pulse position modulation (PPM) code.

In the IRIG and in the neural PPM code, the time of the first pulse is associated with when the event took place and the interval between subsequent pulses describes the intensity of the stimulus at the start of that interval. This type of code is also known as a "phase code" or a "place code."

The instrumentation industry has moved on with the advent of the digital computer and the emphasis of the IRIG today is totally on pulse code (rather than pulse position) modulation.

9.3.2 The Neural Code used in the parvocellular (chrominance) and other bipolar pathways

The optimum midget type (bipolar input) ganglion neuron should accommodate the largest amplitude bipolar signal without causing significant distortion. This condition calls for the quiescent emitter (dendrite) voltage, Ven(quiescent), to be in the middle of the dynamic range between the emitter cutoff and saturation voltages. As a result, the same ganglion circuit as used for the magnocellular pathways is biased to provide a continuous series of action potentials that can be phase modulated to encode the amplitude information associated with the bipolar analog stimulus.

http://neuronresearch.net/vision/pdf/14Tertiary.pdf
Being a place code, the action potential stream generated by the ganglion neuron will exhibit a discontinuity very near the time of any major change in the stimulus. However, the value of that change may not be apparent until the next clearly defined time-delay interval (between the subsequent two pulses). This fact has long been recognized in the electrical engineering community and is memorialized in both the NTSC and PAL analog color television standards. As in these systems, the neural system uses the positive region of the bipolar signal to encode "green" information and the negative region to encode either "blue" or "red" information (there are two chrominance channels in the large mammals).

If care is taken in experiment design, it is possible to ensure a simple bandlimited step input to the encoding portion of the stage 3 ganglion neuron(s) associated with bipolar signals (such as chrominance). Being a bipolar channel, the absolute starting and ending voltage levels of the step relevant to the neural matrix are significant. It is frequently desirable to generate a monopolar stimulus starting from the nominal quiescent level of the input circuit.

9.3.3 The Transfer Functions for the Sum & Difference Neural Codes

The following figure shows the nominal transfer function for the ganglion neuron; biased for monopolar operation on the left and for bipolar operation on the right. Note the linearity of the transfer function with respect to time delay interval. Conversely, the transfer function is highly nonlinear (in fact asymptotic) with respect to the rate of action potential generation.
60 Neurons & the Nervous System

9.3.4 Examples of sound encoding

The following figure provides simple examples of signal encoding. The left frames show the typical quiescent condition at the top (output above the related input), a phasic signal resulting from stimulus by a constant amplitude analog signal, and a phasic signal resulting from a higher amplitude analog signal. In both cases, both analog signals cause a first phasic action potential very near the start of the analog signal.

The right frames show a more complex situation. The top frame shows a constant phasic signal in the absence of any analog input stimulus. The middle frame shows the phasic response to a two-step positive-going analog stimulus, while the lower frame shows the response to a two-step negative-going analog stimulus. In both cases, a change in the pulse spacing occurs with the start of the analog waveform. Note that large negative going analog signals can drive the resulting phasic signal to very long pulse-to-pulse spacings. These long intervals greatly restrict the transfer of information by the system.
The maximum action potential pulse rate is difficult to specify. Under in-vivo conditions, the maximum rate reported in the literature is typically above 200 but less than 500 pulses per second. Under in-vitro conditions, and particularly parametric excitation conditions, rates up to 900 pps have been reported. However, it is not clear that these high rates are significant and can be decoded without distortion by the satellite neurons discussed in the following pages of this subject set.

9.4 A functional Node of Ranvier as an exemplar of a type 2 (phasic) conexus

The geometry and material properties of the Node of Ranvier have been studied in great detail within the cytology community. However, these studies have not led to an understanding of how the Node operates.

This section will develop in detail the morphological and electrophysiological aspects of a Node of Ranvier in its role as a type 2 conexus in a stage 3 neuron. This role requires the conexus to regenerate action potentials received from a previous conexus associated with the signal projection (stage 3) function. A complete understanding of the operation of the conexus within a Node of Ranvier leads directly to understanding the signal encoding function performed by a similar conexus in the ganglion cells of the visual system. It also explains the operation of a variety of similar encoding cells, such as the Purkinje cells of the cerebellum.

The Node of Ranvier consists of two parallel paths between contiguous axon segments. The

Figure 9.3.3-2 Examples of the place code used in the neural system. The code is the same but its application to the summing (A) and differencing (B) channels is fundamentally different. In A (top) only random noise spikes occur in the absence of stimulation. Stimulation causes the generation of an organized set of spikes with their spacing indicative of the intensity of the stimulation. In B (top), a set of equally spaced spikes are created in the absence of stimulation. Upon stimulation by positive-going stimuli, the interval between spikes decreases in proportion to the amplitude of the stimulus. Conversely, negative-going stimulation causes a proportionate increase in the interval between spikes in proportion to the intensity of the stimulus.
62 Neurons & the Nervous System

primary signaling path is discontinuous with respect to the axoplasm of the pre-NoR terminal and the dendro/axonplasm of the post NoR segment. Simultaneously, there is a continuous chemical path paralleling the signaling path and responsible for the homeostasis of the complete stage 3A neuron. The chemical path is considerably larger than the signaling path and much easier to photograph, particularly when using light microscopy. When using electron microscopy, it is extremely difficult to orient the axon of the neuron to differentiate between these two paths.

From the signaling perspective, the Node of Ranvier forms the simplest, and most accessible, amplifier in the neural system. It exhibits an axial symmetry and is recognized to be a region of action potential regeneration based on its description as being a site in the salutatory transmission of the neural signal. In this context, there are no analog signaling circuit element related to the NoR. Its sole purpose is to generate an action potential at the collector terminal of its Activia any time a monopulse of sufficient amplitude is received at its input terminal (the emitter of the Activia).

If the functional operation of these features of the NoR of a projection neuron can be understood in detail, it becomes much easier to understand the operation of other active locations.

9.4.1 Merging morphology and electrolytic topology

While the functional performance of the NoR is very simple, the pre-NoR and post NoR regions of the associated axon segment (particularly with regard to their myelinated sheaths) are not.

The Electrolytic Theory of the Neuron provides the first detailed interpretation of the complex morphology of the Node of Ranvier. It shows that the various paranodal areas are in fact electrical matching filters between the lumped parameter circuit of the node and the distributed parameter character of the remainder of the axon segments (intemodes). These regions are responsible for;

- receiving a propagating energy signal and changing it back to an electrical charge signal diffusing into the emitter area of the NoR, and
- accepting a higher amplitude regenerated action potential, converting it into a propagating energy signal and launching it along the next axon segment.

Berthold provide a thorough geometric analysis of a typical Node of Ranvier, exterior to the axon itself. However, the analysis was based on low magnification imagery that does not support discussions at the molecular and membrane level. There is considerable imagery available at higher magnifications. This imagery provides much of the foundation for the following discussion. Figure 9.4.1-1(A) provides a composite schematic of the Node of Ranvier at a detailed level. The principal modification is to show the reticulum, the area within the dashed lines and also called the smooth-surfaced endo-plasmic reticulum (SER), of each axon segment branching to contact the specialized bilayer membrane on each side of the Activia within the node. These specialized areas occupy regions of the nodal gap usually labeled recesses. The specialized areas need not extend around the entire circumference of the lemma at each location. This reticulum branching arrangement is analogous to the arciform structure seen in pedicle micrographs. An additional reticulum area, shown in (B), is found within the poditic area and extending from the base of the Activia to the specialized area of the nodal lemma. An additional modification expands the area of electrostenolytic activity to show two zones. The first zone is shown by heavy solid lines at three points of the plasma lemma. This zone consists of the specialized membrane and its electrostenolytic coating. The

59 Berthold, C. (1978) Morphology of normal peripheral axons. In Physiology and Pathobiology of axons, Waxman, S. Ed. NY: Raven Press pp. 42, plate 17. This theory calls for a third area of SER at or beyond the left edge of this figure.

second zone is shown crosshatched and is next to the exterior surface of each specialized membrane. It is the site of local bioenergetic material storage (and/or recycling).

The electrical modifications consist of showing the input current, I_{in}, arriving at the node from the pre-nodal axon segment, the output current, I_{out}, going from the node into the post nodal axon segment and the three principal currents passing through the nodal gap in support of the active circuit within the node. These currents will be discussed in detail below.

The diffusion modifications consist of showing a manifold, M, within the nodal gap where bioenergetic material can be exchanged among the three bioenergetic material storage areas (adjacent to the exterior plasma membrane of the axon) and with the vascular system outside the nodal gap. This exchange is shown by the darker gray areas in the figure. The details of the overall circulation of the bioenergetic materials will not be discussed in detail.

In the past, the electrical characteristics of the node have always been discussed using simple circuit diagrams based on direct currents flowing through linear networks, consisting of lumped constant 61,62,63. Leakage through the wall of the axon segment has usually played a significant role in these equivalent circuits. Only a conceptual discussion of the actual current flow has been offered. To understand the actual situation, and the importance of distinguishing between the use of probes penetrating the axolemma versus those sensing the electrical field within the nodal gap, exploring the electrical model under dynamic conditions is necessary.

Figure 9.4.1-1(B) expands on (A). For simplicity, it only shows an expanded view of the upper half of that figure, which is assumed to be axially symmetrical for this discussion. The three specialized regions are shown separated by 7-layer membranes where the axosegments merge with the nodal lemma. These 7-layer, sometimes called 5-layer, structures form tight junctions. They are not electrically active. The membranes need not be asymmetrical individually. The regions associated with the specialized membrane areas are shown in additional detail. Note that three open boxes have been shown on the inside of the plasma membrane, one associated with each specialized lemma. These boxes represent the internal coating of the lemma in these areas frequently discussed in the literature. Most current literature does not subdivide this undercoating into three separate regions. However, assuming this coating is subdivided to match the subdivision of the SER into three regions is reasonable. See Berthold reference above. The important point is that these internal coatings are not in intimate contact with the membranes 64. They may or may not be important from an electrical perspective.

Figure 9.4.1-1 Current flow through the Node of Ranvier. A; the quiescent node, a limited current may flow from the emitter to the base as shown by arrows. Virtually no current flows in or out of the collector. B; during stimulation, the currents are complex because of the currents flowing through the Activa (active device) constituting the regeneration amplifier of the NoR. In the region between the two sections of myelination, the propagating signal is transferred back to a diffusing signal. The diffusing signal is funneled into the emitter area of the Activa as I_{in}. If it creates a potential that raises the emitter/base potential to exceed threshold, the axon potential will be discharged through the base terminal as shown. Once started, this discharge is independent of the emitter/base potential and is represented by the output current, I_{out}. I_{out} stimulates a new propagating signal within the myelinated portion of the next axon segment. When the amplification factor of the Activa is reduced sufficiently, the discharge phase terminates and the recharging of the axoplasm chamber begins via the collector bias terminal labeled C. Until the collector (axoplasm) is restored to its resting potential, the Activa is in a refractory condition and cannot be stimulated to generate a second action potential. See text.
The weight of the lines indicating the direction of the current flow suggests the general amplitude of the current at that location. However, the actual flows are functions of time that will be discussed below. There is a bias potential introduced at (2) due to the electrostenolytic process occurring at the surface of the specialized lemma. There is little current flow at E due to this bias potential. The purpose of the bias is to maintain a stable voltage on the emitter of the Activa within the node. The primary input current is that shown as I. This current passes between the emitter and the base of the Activa. Following paragraphs will separate the electrical operation of the node into three time intervals:

+ the initial period when the Activa is operating in a linear mode,
+ the discharge period when the leading edge of the action potential is being generated, and
+ the recharge period when the trailing edge of the action potential is being generated.

During the initial period, the current causes an equal current to flow from the base to the collector of the Activa. Because of this action, the net current through the base, labeled B, is essentially zero. When the voltage between the emitter and the base reaches a threshold value, the circuit begins to do a one pulse oscillation. This causes a large additional current to flow through the Activa by discharging the capacitor in the collector circuit. However, this current flows out of terminal C and back into terminal B. There is no appreciable current flow through the nodal gap during this interval. After discharge of the capacitor in the collector circuit, the Activa becomes cutoff and the capacitor recharges through the power supply impedance (4). As this process proceeds, current emanates from terminal C and passes through the nodal gap. This is the current usually sensed by a non-penetrating probe introduced into the nodal gap.

9.4.1.1 Detailed operation

The exact function of the so-called nodal apparatus, within the nodal gap, has been sought a long time. Its complexity at first glance appears excessive for the function required—which has also been poorly understood. This section will describe in detail the functions carried out by the active portion of this apparatus. The sophistication of the Node of Ranvier exceeds that of almost any man made electrical circuit—and it is clearly an electrical circuit. No hint of any so-called chemical neurotransmitters has been found, although many materials enumerated as neurotransmitters are employed in the electrostenolytic processes powering the electrical circuits. It has been optimized from perspectives man seldom considers. The following discussion will probably overlook some of these perspectives.

+ Although the active circuit operates at a relatively low impedance during regeneration in order to drive the following transmission line properly, it exhibits a high input impedance while operating in the initial linear mode. This high input impedance lowers the requirements on the preceding transmission line segment.
+ To increase the input impedance of the active circuit further, the diode associated with \(V_{ee} \) exhibits a very high impedance at low input signal levels.
+ To reduce the demands on the impedance of the input transmission line during signal regeneration, the active circuit employs two separate capacitors and exchanges charge between them. Using this technique, there is no requirement for the input transmission line to provide a significant amount of power to the emitter circuit of the Activa.
+ To reduce overall power consumption, a significant part of the power drawn from power source \(V_{cc} \) is returned to the power source \(V_{ee} \) during the recharging phase of regeneration. This can reverse part of the normal electrostenolytic process at E. The reconstituted bioenergetic materials can be reused later or transferred to the power supplies at B or C by diffusion within the nodal gap (near the recesses).
+ To reduce interference between adjacent neurons, essentially all of the current flow associated with regeneration occurs within the cylindrical region formed by the narrowest
passage of the nodal gap (dimension G_2 in Berthold). Only the return current paths associated with the input and output signal actually pass through the nodal gap.

To avoid low reliability or premature failure, the threshold of the regenerator circuit is relatively low compared with the received signal amplitude. Some estimates have this safety margin at 5:1, a ratio supported by the analysis of this work.

Analyzing the overall circuit within the node by time interval is necessary to understand the operation of the node. Figure 9.4.1-2 presents the full circuit diagram of the Node of Ranvier (A), a set of waveforms describing the operation of this circuit (B), and a very simplified model (C) suitable for overview discussions. Note the three individual power supplies consisting of a battery and a diode in series in (A). The complete circuit diagram of each electrostenolytic process, and the associated diffusion processes supporting it, are omitted for simplicity. Since the operation of the circuit involves several different modes involving significant shifts in current direction, care must be exercised in applying Kirchoff’s Laws. Both the laws relating to the sum of the currents at a node and the continuity of the currents in a branch must be met. These laws must be used in the differential calculus form to accommodate the transfer of currents between resistive and capacitive circuit elements in transient circuits. Caution must also be observed with respect to the batteries in these circuits. These are rechargeable batteries and the circuit is configured to recharge some of them during operation. The form of the waveforms shown in (B) is freehand. However, they represent the actual exponential waveforms based on conventional circuit time constants. In some actual cases, the exponentials exhibit the effect of the variable impedance of the power supply diode. This variable impedance causes the time constant to be a variable during the recharging cycle.

The resulting action potential waveforms are distinctly different from both conventional RC circuits and the so-called generator waveform of the P/D process and photoreceptor cell. For further details of the oscillatory process, see Section 9.2.4.

Initially, the emitter is biased so that the Activa is cutoff. No current flows through the collector and the collector voltage (the resting axoplasm potential) is at the intrinsic membrane potential, V_{cc}. With no current through the collector, there is no current through the emitter. The emitter voltage source, V_{ee}, holds the voltage of the emitter fixed but does not provide significant power to the circuit. When a signal, usually labeled an action potential, arrives from the previous active circuit, it charges the capacitance associated with the emitter circuit and injects current into the emitter. The circuit branch through the battery V_{ec} is open because of the diode. The current into the emitter generates an equal current emanating from the collector. The impedance of the diode and the capacitor cause the collector voltage, V_c, to become incrementally more positive. During this interval, V_c mimics the emitter to base voltage. This change in voltage occurs in time phase with the input signal as shown in the initial portion of (B). If the voltage at the emitter is not great enough to reach the threshold value, shown as 10 mV, the circuit operates as a simple amplifier. The threshold value is determined primarily by the impedance of the circuit between the base of the Activa and the point B. Since both the emitter current and the collector current flows through this element, its impedance causes the transfer impedance of the overall circuit to exhibit an incremental region of negative attenuation, i.e. amplification. Any incremental increase in emitter voltage above this critical voltage causes a significant increase in collector current. The circuit enters the discharge mode at time T_{dis}. The Activa becomes equivalent to a closed switch between the emitter and collector terminals. The collector power supply and diode in series cannot sustain the collector voltage. A large current passes through the Activa from the output capacitor to the input capacitor, with a return path back to the output capacitor through E to C. This causes V_c (the axoplasm potential) to proceed to V_{sat} (about 120 mV more positive than the quiescent collector voltage), the intrinsic membrane potential established by the specialized membrane at C, as quickly as the circuit parameters will permit. As V_c moves toward V_{sat}, it reaches a point where the negative incremental transfer impedance of the Activa cannot be sustained. This is the switching point at time, T_s. The Activa now looks like an open switch. At this point, the circuit changes from the discharge mode and begins the recharge mode. Note, there is no requirement for the discharge current to go to zero before the switching event. However, it does go to zero during the switching event.
After T_p, the Activa is an open circuit, and the overall circuit is now passive. The two capacitors return to their quiescent voltages independently. This independence is a factor in determining the refractory period of a Node of Ranvier. The precise values of the capacitors and diodes involved are not available from the literature. It can be assumed for the moment that the capacitors are of equal value. If so the final voltage across each capacitor will be approximately equal to about 50% of V_{cc}. The collector capacitor will begin to recharge and proceed toward V_{cc}. However, the emitter capacitor is already at a voltage greater than V_{ee}. This capacitor will proceed to redistribute charge between its plates by sending a current through V_{ee} in the direction to recharge this battery. Battery V_{ee} is in a unique situation. It is not required to furnish power to the emitter circuit when the Activa is cutoff. It does not provide power during the discharge portion of the operating cycle and it receives power from the emitter capacitor during the recharging portion of the cycle.

The time interval, T_r, is defined as the regenerator time delay. This interval is more easy to define mathematically than the time between T_p and the median time of the regenerated action potential. However, the interval between the median times of the input action potential and the output action potential is easier to estimate from experimental data.

Note the two dashed lines during the recharging interval of (B). One corresponds to the charge transfer versus time for each capacitor. Since the Activa acts as an open switch during recharging, the collector potential (the axoplasm potential) returns to the intrinsic membrane potential without regard to the recharging taking place in the emitter circuit. Thus the initial portion of the action potential in (B), prior to T_p, is formed by the combined discharge process involving both capacitors. However, the recharge cycle occurs separately in the emitter and collector circuits. The falling portion of the action potential, as normally recorded, is only dependent on the collector circuit parameters and the transmission line of the subsequent axon segment.

If the power supply impedance of the collector circuit is higher than normal or the collector capacitor is larger than proper, the recharging interval will be extended. This will lengthen the refractory interval of the axon and may lead to pathological conditions. A loss of myelination is the primary cause of excess capacitance in the collector circuit. Such loss is a primary cause of multiple sclerosis. An alternate cause is a lack of adequate bioenergetic material for the electrosynthetic processes. Inadequate performance of the similar elements in the emitter circuit can affect the overall refractory period but the shape of the action potential will not be impacted.
Both of the recharging circuits lie completely within the area of the specialized lemmas and the associated bioenergetic materials participating in the electrosynthetic process. During the recharging interval, the voltages across the two capacitors are returned to their quiescent values as quickly as permitted by the time constants of the respective circuit parameters. Very little current associated with the recharging process passes through the nodal gap. However, since the recharging process does complete the voltage profile of the axoplasm known as the action potential, a voltage signal is applied to the output transmission line of the axon segment. A current travels down the axon and a return current travels back from the next node via the interneural matrix. This current does pass through the nodal gap and point C. Since the transmission line of the next axon segment exhibits a nearly pure resistive characteristic impedance (see Section 9.1.2), the current traveling down that line is directly proportional to the voltage waveform of (B). This includes the small step on the leading edge of the waveform. Under normal conditions, this step is sufficiently attenuated before reaching the next node or synapse that it does not initiate signal regeneration.

Two points must be noted. The current passing into the post nodal axon segment occurs at a time later than the time of the current arriving from the pre nodal axon segment by the regenerator delay interval, T\text{R}, see (B). This time interval between waveforms plays a significant role in the calculation of the group delay and the average velocity associated with an axon. The overall average velocity, also known imprecisely as the conductance velocity of the neuron in the biological literature, is given by the physical length of the axon segment divided by this delay. This calculated and frequently quoted average velocity is 20-50 meters/second depending on temperature. Second, the phase velocity of the signal along the axon segment, between regenerators, is at least 4000 meters/second. This is much faster than the average velocity. See The Nominal Neuron in appendices.

There are a variety of simple circuits sketched in the literature attempting to describe the flow of electricity within and around neural conduits generally described as axon segments. All of those found by the author attempted to describe these currents using simple direct current practice, as opposed to pulse transmission practice. There is a great deal of difference between the two. As in radio transmission or light waves, having a literal return path carrying a current identically equal to the transmitted signal is not necessary in pulse transmission. Part (C) of the figure attempts to define the actual conditions found along a series of neural conduits as a function of time and to develop a convention regarding the charge flow conditions. The primary concern is the definition of inward and outward currents. Do the terms apply to the currents where measured external to the axon? Or, should they be associated with the actual regenerator circuit? In the latter case, the inward current contains three components. First, the current arriving at the regenerator circuit from the previous axon segment as shown in the 1st (upper) caricature. Second, the current arriving at the regenerator circuit from the INM as shown in the 2nd caricature. Third, a small component of current that generates the rising waveform of the action potential in the following axoplasm. The total outward current also contains three components. First, the recharging current shown in the 3rd caricature. Second, a component that drives the following axoplasm toward the quiescent axoplasm voltage. Third, an inconsequential and normally overlooked portion that is impressed on the previous axon segment as part of the emitter recharging process.

The role of each of these current components can be seen more clearly by considering the time interval when they occur. Prior to \(T\text{I} \), the only inward current of interest is that approaching from the previous axon segment. After \(T\text{I} \) and before \(T\text{R} \), there is a large inward current from the INM due to the discharge of the capacitor associated with the following axon segment. Following \(T\text{R} \), there is a large outward current to the INM associated with the recharging of the two capacitors of the regenerator circuit. The currents affecting the following axon segment, and shown oversimplified in the 4th caricature, occur for the most part after \(T\text{R} \). A small part of the inward current from the INM drives the rising portion of the action potential and a small part of the outward current to the INM drives the falling portion of the action potential of the axoplasm.

It is a mistake to interpret the loops with arrows as indicating the direction of current flow in a neuron. They indicate the direction of energy flow, and information flow. They correspond to a Poynting Vector.
The currents flowing through the nodal gap are limited to the return current paths for the two axon segments involved. All other current flow, which is significant, is constrained to within the constriction of the nodal gap mentioned above. The current flowing through the nodal gap is readily sensed by a field probe that does not penetrate the axon. (C) shows a greatly simplified electrophysiological model overlaid on the morphological model of a Node of Ranvier. Compare this concept of two current pulses of opposite polarity and separated in time passing through the nodal gap with the interpretation of probe data from a toad presented by Tasaki65 and republished widely66. The analysis in Zagoren & Fedoroff will not be used here because of several conditions and definitions they adopt. In the experiment of Tasaki using only one field probe outside of a single nodal gap, in the perinode and labeled N1, the recorded waveform is bipolar as expected. By employing air gaps, the probe acted as a Faraday cage, capturing all of the current passing in or out of the nodal gap. The return lead is in contact with the remainder of the fluid surrounding the entire specimen. The peaks are separated by a period equal to the regenerator delay. The interval, \(T_r \), is approximately 0.06 msec. The peak amplitudes of the two phases are in the ratio of 0.6:1. This ratio is very close to the relative amplitude of the nominal pulse arriving at a node at time \(T_s \) compared to the regenerated pulse leaving the node at time \(T_r \), and calculated in Section 10.5.3.4.

When Tasaki summed the signals from two adjacent nodes, his test set inverted the polarity of the results and the return circuit is less defined compared with the desired signals. When measuring only one node, the signal was applied to the grid of an amplifier. When measuring two nodes simultaneously, the combined signal was applied to the cathode of the same amplifier. He did not isolate the currents through the nodes from the remaining fluid around the specimen except for the fluid next to the axolemma and myelin of the axon segment. Thus, his only Faraday cage collected signal current passing through a very high quality insulator. The result was an amplifier operating with an open grid (or an unspecified grid leak). Such a circuit is subject to unexpected signal rectification and poor DC response. The poor DC response is recognizable in the tail following the waveforms. The waveforms are clearly different from those in the one probe experiment and rectification must be considered. The probes at \(N_1 \) and \(N_2 \) were sensitive to any and all currents flowing in the surrounding fluids, including the desired currents through the nodal gaps. These conditions make unambiguous interpretation of the data difficult. The two recorded peaks are separated by about 0.106 msec. This interval corresponds roughly to twice the regenerator delay measured above as expected.

It should be noted that, to the extent that the inward and outward currents shown are created as part of the electrosthenolytic process associated with the three batteries, the actual amplitude of the currents measured as flowing into or out of the INM will be reduced. To be complete, the inward and outward “energy flows” between each Node and the INM should be represented by both an electrical and a chemical component.

Figure 9.4.1-2: Operation of the Node of Ranvier. (A) The detailed schematic. (B) The principle voltages and currents. (C) Additional details of current flow along the axon of a projection neuron.
The above putative waveforms agree well with those presented by Frankenhaeuser & Huxley, taken at the post-junction side of a hillock (Section 10.10.1) and provide an alternate explanation for the counter-flowing waveforms attributed to Na+ and K+ in Waxman & Wood. Waxman & Wood data is all computer simulations.

9.4.1.2 The introduction of myelin in connection with the axon

As indicated above, a lengthening of the axon of the ganglion neuron relative to the bipolar neuron can introduce capacitance in shunt with the other impedance elements of the output circuit and lead to oscillation in the ganglion circuit. However once a critical level of capacitance is reached, additional capacitance is not desirable. This lumped capacitance requires the Activa switch more current between the input and output circuit to achieve the same level of action potential amplitude. To avoid this problem while achieving maximum axon length, a portion of the axon is wrapped in myelin. This process has the effect of thickening the dielectric between the axoplasm and the surrounding plasma and thereby lowering the effective capacitance per unit length of the axon.

As the axolemma necessarily becomes a cylinder as it lengthens, another electrical phenomenon is introduced. An insulating cylinder surrounded by conductors introduces an inductance per unit length of the cylinder.

As a result, an extended axolemma contributes two electrical elements that profoundly affect the performance of a given Activa. The lumped capacitance near the unmyelinated ends of the axon, in combination with the resistive elements of the collector (axon) circuit directly control the temporal performance of the axon. The distributed capacitance, in combination with the distributed inductance, both on a per unit length basis, control the propagation velocity of signals along an extended axon. The propagation of neural signals is a phenomenon not previously described in neuroscience. The term propagation is introduced here to differentiate stage 3 neuron signal distribution from the concept of signal conduction (by chemical diffusion) which is not employed within a long axon. Propagation is a distinctly different mechanism. It is a key to understanding the operation of the stage 3 neurons.

There is a large community of physiologists and histologists attempting to explain the role of myelin and changes in myelination, without understanding the basic mechanisms associated with stage 3 signal propagation. Without recognizing the role of inductance in stage 3 axon signal propagation, the actual mechanism of signal projection cannot be discussed rationally. The history of signal transmission associated with myelinated neurons has been summarized in Fulton.

Calculations of the capacitance of an axon per unit length found in the electrophysiological literature, based on a flat plate capacitor, are in error. As shown below, it is not the thickness of the dielectric that is important but the ratio of the thickness of the dielectric to the inner diameter of the dielectric.

72 Neurons & the Nervous System

Similarly, the square root relationship between signal velocity along a stage 3 axon and the outer diameter of the myelinated axon found in the literature is also in error. This average velocity relationship was developed by Rushton based on dimensional analysis, rather than rigorous mathematical investigation, using only a limited range of data. Granit has provided a much larger data base to consider. But neither investigator was aware of the importance of the radius of the inner conductor. Man-made coaxial cables with the same signal velocity and input impedance vary over a factor of ten in the diameter of their dielectric layer (ex., RG 19 versus RG 122). All 50 Ohm input impedance cables exhibit the same capacitance of 29.5 μf/foot and exhibit the same signal phase velocity as computed below regardless of their outer diameter.

The physiology and mathematics supporting these statements were introduced in Section 9.1.2.

9.4.1.3 Voltage and Current waveforms associated with a Node of Ranvier

[xxx Schrager, writing in Waxman, et. al. provides the best set of action potentials acquired in-vivo. While involving artificial stimulation at an earlier location in the signal chain, they do not suffer from any artifacts due to artificial stimulation (like those of Hodgkin & Huxley and of Cole).]

[show simplified waveforms and waveforms showing recharging during discharging in a switching context. Then compare with those of Hodgkin & Huxley.]

[xxx separate propagation from conduction. Conduction is used in pedagogy for simplicity (and some ignorance of propagation). Note that the time delay between here and Mars is about 8 minutes. There is no external return path in propagation. The magnetic aspect of propagation shows through.]

It is important to differentiate between the transmission of signals within a neuron by ionic conduction, as typically encountered in the neurites of neurons, and by propagation as typically encountered within the myelinated portions stage 3 axons and axon segments. Ionic conductivity is associated with an electrical gradient within a solution. It is commonly associated with chemical diffusion within a solution exhibiting a chemical gradient.

Recently, Lemont Kier and his associates have presented an article describing the movement of “protons” through the Node of Ranvier. They only conceptually describe a process of proton hopping. The next section will establish that protons do not move through the tissue or fluids of the neuron as described. Their protons are known in electronics and electrolytics as holes. Holes exhibit the charge of a proton but actually consist of the absence of an electron in a lattice. Through repeated movement of an electron from an occupied location in a lattice to an unoccupied location (a hole), a relatively slow movement of what appears to be a positive charge through a lattice can be observed. This mechanism is a keystone of modern electronics and is described in detail in any introductory text in semiconductor physics.

9.4.1.3.1 Proton hopping (ala Kier et al.) remains inadequately characterized

Kier and several associates have presented a number of papers describing their concepts of charge movement through an aqueous environment. Their basic proposal is that within “bulk water,” a proton can move from one molecule of water to the next by utilizing a hydrogen bond with individual water molecules. Their first paper of 2013 was at best conceptual and primarily involved a simple computer model conforming to a set of probability rules. No forcing function was included to drive their mechanism. No time intervals between transfers of a proton between water molecules is provided. The modeling time is only related to the cycle times of their cellular automata (CA) model and the associated computer program.

A cellular automaton is a collection of “colored” cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules based on the states of neighboring cells.

The second paper of 2013 continues their investigations while relating their concept to myelinated axon nerve impulses. Their abstract describes their approach,

“Myelinated axon nerve impulses travel 100 times more rapidly than impulses in non-myelinated axons. Increased speed is currently believed to be due to hopping or saltatory propagation along the axon, but the mechanism by which impulses flow has never been adequately explained. We have used modeling approaches to simulate a role for proton hopping in the space between the plasma membrane and myelin sheath as the mechanism of nerve action-potential flow.”

It is worth noting their 2015 paper cited above uses the value of 300-fold rather than 100 for the increase in proton travel through their “bulk water” to what is apparently bulk charge transport by electrolytic means through water without offering any data to support either value.

They expand on the sentence in their abstract to assert, “It has been proposed that the action potential developed in these nodes passes along the axon by a jump, hop or saltatory movement between nodes, but the mechanism of this flow has never been adequately explained.” The offer no graphic describing the morphology, cytology or electro-physiology of the processes they discuss. They do note, “Myelin is a protein-lipid membrane that surrounds each node of Ranvier. The spaces between the laminar layers of myelin, and the myelin and axon, called the periaxonal space, is filled with water.” This work depends on other data to show there is no water between the layers of the myelin or between the inner myelin layer and the lemma of the neuron. Their hypothesis is dependent on water existing between the inner myelin layer and the lemma of the axon, their periaxonal space. This water is described as a “water wire” in their text. It supports the motion of protons along this periaxonal space. “This water wire is initiated by an action potential at the post-synaptic terminus of the axon, resulting in impulse propagation along a series of nodes and internode axons.”

The intimate relationship between the myelin and the outer lemma of the stage 3 axon has been explored extensively using electron-microscopy (Section 9.1.2.5 & in greater detail in Sections 10.3.5 & 10.5.2 of “Processes in Biological Vision” (PBV)). This includes the flaggree structure of the myelin where it terminates at a Node of Ranvier. This flaggree at the cytological level represents an “half-section” of an impedance matching element at the electro-physiological level based on conventional filter theory. The electron-microscopy illustrated and cited in Sections 10.3.5 & 10.5.2 clearly demonstrate there is no water layer separating the inner myelin layer and the outer lemma of the axon. The presence of such a water layer would be disruptive of the capacitance contributed by the myelin between the axolemma and the surrounding fluid matrix.

74 Neurons & the Nervous System

Their discussion includes,
• "On the basis of earlier modeling results and this study, we propose that axon action potentials arise from proton hopping through the periaxonal space separating the axon surface from the myelin sheath. This extracellular gap contains H2O in a narrow space that is ideal for rapid passage of proton-hopping information between nodes of Ranvier."

They do stress the H⁺ does not move or diffuse, but the hydronium ion (H₃O⁺) state shuttles along the path in bulk water. They make inadequate distinction between "bulk water" molecules in a fluid state and those in a liquid-crystalline state. In a fluid state, charge transfer along a linear path is extremely slow in the absence of a polarizing field. They note it is about 0.0001 m/s. It can be argued in the absence of a polarizing electric field, the net motion is zero. They also assert that action potentials travel at 0.5 to 10 m/s along unmyelinated axons (in the presence of an unspecified electrical field potential) and at about 150 m/s in myelinated axons (being higher in larger diameter axons). These velocities are not supported by any test data but are consistent with the values in various textbooks.

Kier & Hall offered an additional paper in 2013⁷⁸. It relies upon the above concepts and will not be discussed further here.

The Kier papers offer little insight into the operation of the neural system. Kier et al. offer no mathematics, no graphics or other justification in support of their assertions that charge can move along their periaxonal space at velocities of 150 m/s. The actual signal propagating along the myelination/lemma boundary is by electromagnetic field propagation that does not involve the net flow of any charged particle. The precise situation is explained in detail using the General Wave Equation (GWE) of Maxwell’s Equations (Section 9.1.2). The biological community has had difficulty adapting the GWE because of its mathematical character and its earlier reliance on the erroneous proposals of Lord Kelvin during the 19th Century (Section 9.1.1.3).

9.4.1.4 Ionic velocity versus energy propagation in neurons EDIT

Figure 9.4.1-3 presents the currents in the above circuit in graphical form. Xxx These waveforms can be compared with the textual and graphical discussions of Hodgkin & Huxley. [conclude there is no need for ionic currents, the potassium current is identical to the current through the switching Activa, and the early and late sodium currents are due to the operation of the electrostenolytic process. xxx]

Note the decoupling between diffusion as a function of the linear bias potential versus the independence of propagation from any associated electrical bias potential.

9.4.1.5 Impedance matching between the lumped and distributed circuits

The above figure from Pannese provides a very clear representation of both the morphological and electrophysiological features of the Node of Ranvier. Starting from the bottom of the figure, the myelination is shown at its fullest, thereby minimizing the capacitance of the prenodal axon segment. As the nodal area is approached, the number of myelin layers is reduced and their orientation changes. These actions raise the capacitance per unit length in this region. As a result, the characteristic impedance of this region changes. The region becomes a matching section between the distributed parameters of the axon segment and the lumped parameters of the Node of Ranvier. The Pannese figure does not show the fluting found in the earlier figure from Rydmark & Berthold. Such fluting can provide a similar change in the electrical parameters of the paranodal portion of the axon segment. The result is again a matching section between the distributed parameters of the axon segment and the lumped parameters of the Node of Ranvier.

9.4.2 Description of a node and an axon segment as a functional unit

An early work recognizing the saltatory form of the action potentials along a signal path was that of Huxley & Stampfli exploring *Rana temporaria*. In that work, the position of the Nodes of Ranvier are shown explicitly.

Describing the functional characteristics and elements of the region consisting of a Node of Ranvier and its associated orthodromic axon segment is now possible. Figure 9.4.2-1 presents a caricature of the region accompanied by a functional description using its electrical circuit diagram. Two basic features should be noted. The internode, excluding the conseg portion, is an essentially passive circuit element while the conseg portion is an active circuit. The data in the literature makes it difficult to describe the exact nature of the passive portion of the internode. Much of the experimental data is clinical in nature and involves a determination of the temporal distribution of conduction (group) velocities for aggregates of nerve fibers. Data on the voltage profile of an action potential as it travels along an internode has been

available since the 1940's. It is the variation in the amplitude profile with time as it propagates along the neuron that would allow a determination of the detailed electrical nature of the propagation environment.

The bulk of the axon segment can be described as a transmission (or delay) line as shown here. The terminology used should be relevant to the purpose at hand. However, it is not clear whether the series elements in the line should be shown as resistors or some other circuit element. If the material within the microtubules of the reticulum is liquid crystalline, it is possible for charges to be transferred by loss free mechanisms. Under these conditions, there is no need for energy to be dissipated as part of the charge transfer process. In this case, the series element could be considered a zero loss element and not a conventional resistor. The exact definition of this element is not required here. It could be a simple inductor. Only the recognition that the charge transport velocity in a typical axon segment is more than 4,400 meters/sec for an 8-micron diameter neuron is important here. Whatever the nature of the series element, the shunt element is a simple distributed capacitor. The value of this capacitance is greatly affected by the thickness and dielectric constant of the myelination of the axon segment. This capacitance is greatly influenced by the quality of the myelin, axolemma contact. If fluid from the interneural matrix can enter the space between these two materials, the capacitance between the axoplasm and the interneural matrix is greatly increased. The myelin layers are arranged to provide a labyrinth type of seal to insure maximum integrity in this respect. Rasminsky & Sears\(^81\) found that removing the myelin from a rat ventral root neuron slowed the intermodal signal conduction time from 26 microseconds to more than 600 microseconds at 293 Kelvin.

The signal being applied to the intermode at the Node of Ranvier is shown on the left. The small area of the active device, the Activa, is shown as the vertical bar on the horizontal axis of the upper figure. In electron micrographs, this area is described as electron opaque. In the circuit diagram, it is shown as the base region of the Activa, using conventional solid state semiconductor notation.

Figure 9.4.2-2 shows a series of axon segments separated by Nodes of Ranvier. The bulk currents flowing in and out of the Nodes of Ranvier are illustrated as a function of time. These currents correspond to the inward and outward currents defined by Hodgkin & Huxley. However, the currents consist of electrons and do not involve any ionic flow across any

membranes. The relationship of these currents to the INM are exaggerated because of the presence of the electrostenolytic sources within the nodal areas. To a large extent, the inward and outward currents only exist and very near the nodal gaps. The long term average of the sum of the inward and outward currents is zero. Also shown are the action potentials propagating along the axon. While these signals involve small physical displacements of charge traveling along the axon segment (a “local electromagnetic circuit”), they do not involve any long term average displacement (and there is no “return current” associated with propagation). As a result, there are no current loops (all components of which exist at a common time) related to the operation of the axon as a whole.

9.4.2.1 Determining the electrical performance of a node and internode region as a unit

It is difficult to measure the electrical performance of a projection neuron for several reasons. The size is the major difficulty. The typical axon is only 10-15 microns in diameter, including the myelin sheath. The typical Node of Ranvier is only 10 microns wide. The second problem is the lack of a good common electrical reference point, generally called a “ground” terminal. The intemeural matrix consists of a relatively poorly conducting fluid. It is similar in concept to the atmosphere (or free space) when discussing antennas in that it exhibits a relatively constant impedance in Ohms per square (no other unit is needed) but does not provide a good ground terminal. In electromagnetic radiation at longer than a millimeter wavelength, defining a theoretical ground to occur at an infinite distance from the radiator is customary. This definition also supports the definition of the impedance of free space. In practice, the impedance is usually given with reference to a specific resonant dipole antenna. This antenna has a purely resistive impedance at the frequency of interest of 376.7 Ohms, although it is a highly conducting piece of metal with an ohmic resistance of less than 0.001 Ohms. A similar situation is assumed when recording electroretinographs. In that case, a location on the outer surface of the head is usually used as a reference potential. However, no impedance is assigned to the body plasma. Only an integrated electrical potential is recorded in response to an unknown current flowing through an unknown impedance.

The size problem is compounded by the difficulty of creating an electrical probe that is smaller than 100 microns in diameter, exhibits a serial impedance of greater than 100 megohms, and introduces a shunt capacitance of less than one picofarad at its tip.

The difficulty in making meaningful measurements in an environment containing active electrolytic semiconductor devices cannot be overemphasized. Because the probability of making a meaningful resistance measurement, without the aid of a detailed circuit diagram, is ludicrously small, none of the measurements in the literature will be referenced or vouched for in this work. Section 10.10.x will address this problem in detail.

In spite of the above difficulties, extensive effort has been expended over the years to understand the operation of the Node of Ranvier. The work can be separated into two main
tracks, that involving the voltage clamp technique and the other more general work.

The voltage clamp technique originated with the work of Cole and of Marmont in 1949. It was adopted and effectively exploited by Hodgkin & Huxley and has been widely used since then. A major improvement in the test instrumentation occurred in the late 1960's with the introduction of more sophisticated transistorized test instrumentation. This was followed by the work of Hille in the 1970's. In 1982, Tasaki provided a broad review of the field starting in the 1930's. However, his review omitted much of the above work of the 1960's and 1970's. The most recent work has been by Schwarz, et al. in the 1990's.

All of this work has been exploratory in nature and virtually no model of the actual mechanisms associated with the Node have been offered. All of the calculations have been based on the Hodgkin-Huxley equations. The simple model generally used is that of a continuous axon containing an excitable region in the area where it is unmyelinated. Many of the authors in the 1960's and 1970's provided no electrical model of the Node at all. When addressed, this excitable region has been represented by ever more complex variants of the original Hodgkin-Huxley model of the axolemma. Barrett & Barrett presented a simple model recognizing the difference between the myelinated and unmyelinated regions. The model presented by figure 4-15 in Waxman, Kocsis & Stys is probably the ultimate in the extension of a simple linear circuit to a point of absurdity in order to model an unknown non-linear mechanism.

Because of the need for a very detailed discussion of the technique, the application of the voltage clamp technique to the Node of Ranvier will be addressed in Chapter 2.

9.4.2.2 Signal propagation over the Node of Ranvier and an axon segment as a unit

Huxley & Stampfl present a figure in 1949 that described both the phase velocity and the average velocity of the signal traveling along an axon in vitro. The data was limited by the instrumentation of the day. Although not as accurately calculable as in the next figure, the curves are consistent with the phase velocity of 4,400 m/sec and the regenerator delay of 0.019 msec found there. The signal waveforms are all monophasic.

Smith et al. have provided some data that updates the Huxley and Stampfl results. The first three figures of Smith et al. describe real test configurations and real results. However, the

mathematical models used to create figures 5-4 and beyond do not represent the propagation of a real signal along a real axon. No attenuation constant or phase constant was introduced into their equations. Bostock has presented additional data, but a similar caution applies. Most of his voltage waveforms were computer-generated.

Figure 9.4.2-3 Saltatory conduction in a normal rat ventral root fiber: longitudinal current, derived membrane currents and membrane current contour map, plotted to same distance and time scales, with dashed lines and arrowheads added by this author. A, Averaged longitudinal currents (n=128) recorded at 100 micron intervals along the root (calibration bar: 4 microamps.). B, Membrane current records calculated by subtracting adjacent records of (A). C, Membrane currents re-plotted as a contour map. Inward currents are indicated by continuous lines, outward currents by dotted lines. Contour interval: 0.5 nA/100 micron electrode displacement, 37°C. Dashed lines relate to signal velocities in the neuron, see text. Modified from Smith et al. (1982)
Figure 9.4.2-4 is from Smith et al. It is reproduced here with a series of dashed lines and a heavy vertical arrow added by this author. The specimen was a rat spinal root axon in-vivo. (A) was obtained by launching a pulse along an axon using the test configuration of Rasminsky & Sears91 and measuring the voltage profile at 0.1 mm intervals using an (intercellular) probe next to the outside of the Schwann cell surrounding the axon. Usually, the detected signal was due to displacement currents. The leakage current component of the interneuron where it is myelinated is exceedingly low. It is possible the waveforms contained a conductive component for the probe positioned in the perinodal space. The signal levels were so low that considerable data processing was used to obtain these waveforms, typically averaging 128 individual traces at each location. (B) was obtained by taking the trace-to-trace differences after averaging. This process emphasizes the major changes occurring in the areas of the Nodes of Ranvier. These waveforms were then used to construct the contour map in (C).

The focus of each contour group represents the best estimate of the location of the Node of Ranvier (along the horizontal axis). It also represents the time of occurrence of the peak amplitude of the signal at that location relative to the signal at the previous measurement point. Note that the best estimate of the node position is in fractions of a millimeter in this presentation whereas the actual axial node dimension is in microns. The probes used had a nominal diameter of 100 microns. The contour map is a particularly compact form for interpreting the information obtained. However, it obscures some features of the raw data. The grouping of the waveforms in (A) is very important. In (C), overlaying a sloping line through the peaks of the contours to obtain an average velocity for the neural signal over a distance of several nodes is possible. The overlay shown corresponds to an average velocity of 44 meters/sec., a number consistent with the literature for a myelinated axon of about eight microns overall diameter. The peaks of the contours represent the peak of the newly regenerated action potential at each node. A second dashed line can be drawn slightly below this line and with the same slope. This second line is shown as intersecting the skirt of the contour at approximately the 10% amplitude point. It is meant to represent the average velocity line measured at the point where the threshold level of the regenerator circuit is exceeded. This is the point where the integrated current from the transmission line of the previous axon segment has resulted in a voltage exceeding the threshold voltage.

Looking again at (A), one sees a quite different picture. A similar dashed line drawn through the peaks of each of the individual groups of measurements is very nearly horizontal. At the scale shown, this overlay shows the phase velocity of the signal within a given axon segment is immensely faster than the average velocity. At the scale of the drawing, the phase velocity is clearly at least 30 times faster and probably 100 times faster than the average velocity in (C). The dashed lines in (A) represent the phase velocity of the signal energy. They are drawn at 1% of the slope passing through the nodes in (C), e.g. 4400 m/sec. Although these lines appear horizontal, they are not. Pending further experimentation, the phase velocity of the signal within an individual axon segment of a myelinated neuron of about eight microns overall diameter will be taken as 4,400 meters/sec. This measured value is at least a factor of 100 times the accepted average velocity associated with a myelinated neuron of this size. If dashed lines, again apparently horizontal, representing this phase velocity are introduced into (C) as the velocity between nodes, there is a considerable delay left unaccounted for at each node. This delay is the pulse regenerator delay associated with the charging time of the regenerator conexus that reproduces the action potential. The delay derived from the graph is approximately 0.019 msec. (19 microseconds) at each node.

As shown in [Figure 9.1.2-2], the phase velocity of the signal propagating along an axon segment is inversely proportional to the diameter of the lemma. While this variation is substantial, it is not the dominant factor in the average velocity in a long axon containing more than one NoR. Using the relationships shown in the above figure, it is possible to calculate the average velocity of a stage 3 signal along a myelinated neuron with multiple Nodes of Ranvier. The average velocity is given by the expression;

avg. vel = distance signal traveled/total time of travel
avg. vel = phase vel/(1+(NoR delay x phase vel)/avg distance between NoR))
The second term in the denominator is usually much greater than 1. Therefore,
avg. vel. ≈ avg. distance between NoR/NoR delay.

avg. vel ≈ 0.9 mm/0.019 msec ≈ 47 m/sec or 47 mm/msec at 37 Kelvin.

This relationship is contrary to early assertions attributed primarily to Rushton, but adopted by many lecturers, the average velocity in a myelinated neuron is not strongly related to the phase velocity within the axon segments. More importantly, the average velocity is totally independent of the diameter of the axon, whether measured at thelemma or at the exterior of the myelination. The delay associated with the phase velocity within each axon segment is negligible. The average velocity is calculated from the average axon segment length divided by the pulse regenerator delay at the associated Node of Ranvier. Taking the phase velocity of the signal as 4400 meters/sec, the calculated average projection velocity is 47 meters/sec, very near the 44 meters/sec obtained graphically. The delay associated with each NoR is remarkably constant. The difference in average velocity among stage 3 neurons is dominated by their differences in average axon segment length.

As noted in Section 2.6.1, the average velocity of signal propagation is a direct function of temperature.

Both Huxley & Stampfl and Smith et al. calculated an average velocity for their data but neither group addressed the obviously much higher phase velocity in their data or the NoR delay at each node.

9.4.3.1.2 The average propagation velocity of a neuron

Waxman produced a paper in 1978 that included a wide variety of information related to the axon, the Node of Ranvier and other features (See Section 5.1.2.5.2). Much of the data assumes the chemical theory of the neuron with many identified ionic currents flowing by diffusion. It reproduces a graph from Brill et al., with indicated data points. However the points shown are all calculated, using numerical integration rather than closed form solutions of the equations of Huxley and Hodgkin, and with additional smoothing to get stable solutions. They provided no theoretical foundation for their mathematical models, other than a loose conformation with the H&H model of the neuron. Unfortunately, Brill et al. does not recognize the Node of Ranvier as a signal regenerator and predicts “As L becomes large, the conduction velocity falls and finally propagation is blocked.” They did not quantify the value of L when conduction ceased but showed it becoming asymptotic near L=10 millimeters (Fig. 1C) for an axon of 10 micron diameter. Their assertion clearly falsifies their empirical model and significantly undermines the Waxman paper. It also conflicts with the fact that neurons with lengths measured in meters remain quite functional in large animals (at least 2 meters in the author’s personal case).

As noted previously, the theory of this work (Sections 9.1.2) predicts, and the available experimental data of Smith (Section 9.4.2.2) confirms a constant average propagation velocity.

of 44 m/sec for any neuron length that includes at least one NoR. At distances of less than one mm and not including a NoR, the instantaneous phase velocity of propagation is approximately 4400 m/sec (a paltry 1.5 x 10\(^{-5}\) the speed of light in vacuum). The low phase velocity relative to the speed of light is due primarily to the very high impedance of the axons and axon segments.

9.4.2.3 Survey of reported stage 3 average signal velocities

Borenstein et al\(^94\) have provided data on a variety of somatosensory neurons in Figure 9.4.2-4 based on clinical evidence. The difference in velocity of propagation in myelinated (stage 3) neurons versus the velocity of conduction in non-myelinated (other stage, and typically analog) neurons is significant. Borenstein describe the unmyelinated neurons, C fibers, as transmitting nociceptive impulses. This appears an inappropriate label on its merits. These unmyelinated neurons do not transmit pulses. They connect to, and are encoded by, stage 3 neurons that are designed to propagate nociceptor signals at high velocity to the CNS. Their designation of their neural fibers by letter and Greek alphabet extension are of largely historical origin within the clinical environment. Their further description of the purpose of these types is also largely anecdotal. As shown in this chapter, the velocity of propagation is only indirectly related to the diameter of the axon, and this relationship has to do with the thickness of the overlying myelin.

<table>
<thead>
<tr>
<th>MYELINATION</th>
<th>RECEPTOR TYPE</th>
<th>TRANSMISSION (m/sec)</th>
<th>THRESHOLD</th>
<th>DISTRIBUTION</th>
<th>MODALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-alpha</td>
<td>Mechanoreceptor</td>
<td>Rapid (70-120)</td>
<td>Low</td>
<td>Local</td>
<td>Vibration (proprioception)</td>
</tr>
<tr>
<td>A-beta</td>
<td>Mechanoreceptor</td>
<td>Rapid (40-70)</td>
<td>Low</td>
<td>Local</td>
<td>Vibration (proprioception)</td>
</tr>
<tr>
<td>A-gamma</td>
<td>Mechanoreceptor</td>
<td>Rapid (20-40)</td>
<td>Low</td>
<td>Local</td>
<td>Reflex withdrawal</td>
</tr>
<tr>
<td>A-delta</td>
<td>Mechanoreceptor</td>
<td>Slow (5-15)</td>
<td>High</td>
<td>Local</td>
<td>Damaging pressure</td>
</tr>
<tr>
<td>A-delta</td>
<td>Thermal</td>
<td>Slow (5-15)</td>
<td>High</td>
<td>Local</td>
<td>Noxious Temperature</td>
</tr>
<tr>
<td>B</td>
<td>Autonomic</td>
<td>Slow (10-15)</td>
<td>High</td>
<td>Diffuse</td>
<td>Freganglion fibers</td>
</tr>
<tr>
<td>C</td>
<td>Mechanoreceptor</td>
<td>Slow (0.2-1.5)</td>
<td>High</td>
<td>Diffuse</td>
<td>Noxious Pressure</td>
</tr>
<tr>
<td></td>
<td>Polymodal nociceptor</td>
<td>Slow (0.2-1.5)</td>
<td>High</td>
<td>Diffuse</td>
<td>Any noxious stimulus (dull)</td>
</tr>
</tbody>
</table>

Figure 9.4.2-4 Peripheral nerve fiber characteristics. Note the limited range of velocities for propagation in myelinated neurons, and the much slower velocity of conduction in non-myelinated neurons. No reason for the difference between A-alpha & A-beta velocities is apparent. From Borenstein et al., 1995

Redburn & Dahl have provided an average velocity distribution, Figure 9.4.2-5, showing what they describe as compound action potentials but without citation\(^95\). They assert a small subset of signals traveling along a large (sciotic) mixed nerve (not an individual neuron) of the human leg average a velocity of 120 m/s over distances of 120 mm (1.2 meters). The scale of their figure does not support an average velocity significantly faster than 44 m/s for an A-alpha

neuron. Other neurons are reported to travel as slowly as one m/s on average. Their notation is similar to, but conflicts with, that of Borenstein (A-alpha is an afferent path in Borenstein but by definition an efferent path in Redburn & Dahl). They did not explain the low amplitude of the compound action potentials from their slower "compound action potentials.”

Krassioukov96, writing in Ramachandran has provided additional data but without citations. It appears to be a summary of clinical data from different investigators. As a result, his Tables III & IV present a jumbled picture without rational structure.

9.4.2.4 The transmission of signals in a demyelinated axon

When a normally myelinated or otherwise electrically isolated neuron is stripped of its electrical isolation, its capacitance per unit length increases drastically. This causes the characteristic impedance of the axon to also change drastically. The result is an abrupt change in the impedance level as a function of position along the axon. This results in a significant reflection of the energy at the location of the change and a much lower transmission efficiency. It is also likely that a significant change in the phase constant of the circuit will be introduced.

The material reviewed in Section 9.1.1, particularly that of Kaplan & Trujillo, can be readdressed using different parametric values to determine the signal velocity along an unmyelinated axon. The parameters of such an axon can cause it to exhibit signal transmission by conduction (at a greatly reduced speed) rather than propagation. Alternately, the changes can result in propagation but under conditions of significant phase (and therefore pulse) distortion.

Rasminsky and Sears have provided similar data for a demyelinated ventral root nerve. Even in this condition, their data shows propagation with phase velocities of 500 to 600 meters/sec or higher (in some cases, much higher by scaling).

Nusbaum et al. have discussed “white matter” from a clinical perspective97. The material sheds light on the role of myelination in the new born as well as in the diseases of later life. They make the general statement that, “Because myelination of the CNS is essentially a postnatal process...” but then go on to describe the order of myelination as well as the degree of myelination of different regions of the neural system at birth and at subsequent monthly intervals. Their findings generally support the idea that the infant does not perceive significant pain at the time of birth because of limited signal propagation within the neural system. Atlas has provided very detailed information suggesting the infant can feel little sensation from its extremities during the first months of life98. This is understandable if the neurons have not yet been myelinated. His text has also provided considerable material on the appearance of stage 3 neurons in MRI imaging.

Clinically, the loss of myelination is a very serious medical problem. It is typically described as a peripheral neuropathy (that may include neurons within the spinal cord). The most common name for diseases of the myelination are muscular sclerosis. The most common of these is Charcot-Marie-Tooth disease type 1. It is characterized by weakness in the legs and, to a lesser degree, the arms – symptoms that usually appear between mid-childhood and age 30 (WebMD). Guillain Barr Syndrome is another group of symptoms frequently associated with demyelination of the peripheral nerves.

9.4.3 The unique physiological features of the axon segment (internode)

Although the previous discussion has defined the plasmas on each side of a Node of Ranvier, it must be recognized that the postsynaptic plasma of one node is the pre-synaptic plasma of the next node. The conclusion is that an axon segment is a conduit within a closed lemma that is functionally the same whether considered an axon or a dendrite. A single reticulum extends from the postsynaptic end to the pre-synaptic end of the axon segment. The concentration of various particles may vary with location along the axon segment but this is functionally irrelevant. From a signaling perspective and in the first order, an axon and a dendrite are the same. From an electrical perspective, they are also functionally the same. In the case of a chain of non-bifurcating projection neurons, the axons and dendrites are essentially interchangeable. The only way to distinguish them is by associated structures, i.e., topologically or by morphological variation. Placing the subject in a historical context, a dendrite delivers its signal current to an Activa located within, or near, the soma of the cell. An axon delivers its signal current to an Activa located external to the cell body, within a synapse or a Node of Ranvier.

As discussed in the previous section, the power supply source associated with the pre nodal terminal of an axon segment is not required to provide power to the circuit within the node. Its primary purpose is to insure that the emitter of the Activa within the node is biased to insure cutoff of the Activa. The two ends of the axon segment are normally at different voltages. The post nodal terminal is at V_{cc} and the pre-nodal terminal is typically at V_{ee}. Here again, the potential difference is such as to charge the battery V_{ee}. The battery V_{ee} is called upon to maintain a fixed voltage. However, it is never called upon to provide power. This electrolytic battery is always in a charging mode. The battery, located within the manifold of the nodal gap is a supplier of higher energy bioenergetic material, typically GABA at the expense of a lower energy material, typically a glutamate. These materials can be transported by diffusion from the pre-nodal recess to the post nodal recess within the nodal gap where it can be used to power the collector battery, V_{cc}. This process does not involve any thermally dissipative loss, does not involve a Carnot Cycle and is not limited by the Second Law of Thermodynamics applicable to dissipative processes.

In signal processing, the axon and dendrite play a slightly different role. An axon is tailored to carry a single current from the Activa within the soma to the pedicle where a voltage is created that can be sensed by many dendrites without degradation. To avoid degradation, the terminal electrical impedance of the axon circuit must be low. On the other hand, the dendrite (and the podite) are designed to operate at a higher electrical input impedance and receive a small current from each of many pedicles without causing a degradation in the voltage of individual pedicles.

At the cytological level, considerable effort has been expended mapping the particles within the axon segment and other conduits within the neural system. It appears that most of these particles are not actively involved in the electrical function of the neural system. Some of them may play a structural role in forming Activa.

The Activa is shown surrounded by the podite space extending vertically to the cylindrical...
podite portion of the nodal lemma surface indicated by the dark horizontal bars. The podite portion of the nodal lemma, along with its external bioenergetic coating forms the power supply connection marked P in the lower figure. The bioenergetic coating and the nodal lemma participate in an electrostenolytic process. The bioenergetic material is provided to the nodal lemma by diffusion via the nodal gap. The overall path, diffusion through the nodal gap and charge transfer through the lemma, may exhibit a resistive component.

Beyond the nodal lemma to the right, is the post nodal region, an unmyelinated portion of the axolemma. This region is dominated by a specialized portion of the axolemma providing an electrical power source, labeled C, for the Activa. The coating on the outside of this cylindrical portion of the axolemma participates with the axolemma in an electrostenolytic process. The coating is found in the “nodal recesses” of the nodal gap. The overall path, diffusion through the nodal gap and charge transfer through the lemma, may exhibit a resistive component. However, the most important feature of this topology is the large lemma area that is in direct electrical contact with the interneural matrix. The electrical capacitance of this area is much greater than all of the remainder of the internode.

The combination of the Activa, the resistive component in its base lead and the large capacitance in its collector, and/or emitter, lead constitute a regenerative, single shot, oscillator. This oscillator can respond to any excursion of the electrical potential between its emitter and base that exceeds a threshold. The result is the generation of a new action potential pulse with characteristics determined by these resistive and capacitive values. Since these values are typically the same for each internode and Node of Ranvier, it appears that the same action potential is regenerated at each node. This similarity is deceptive. The pulses at each node need not be similar, especially during experiments involving the connection of electrical probes to one or more neuron circuit elements.

Robertson99 has noted that the area of the consec exposed to the interneural matrix at the nodal gap is essentially independent of the diameter of the axon. In fact, “it is a striking fact that the total exposed area of the nodal axon membrane in many large fibers is actually smaller than in many small fibres.” Assuming the electrical capacitance of the Node is proportional to this area, an explanation is available why all action potential waveforms appear to exhibit a similar time constant.

After (re-)generation of the action potential, the signal propagates along the internode via the reticulum until it reaches the next pre-nodal region. Its propagation velocity and attenuation characteristics are determined by the properties of the transmission line. In the pre-nodal region, a region of the axolemma is found that is very similar to that in the post nodal area. It is unmyelinated and coated on the outside by a bioenergetic material that can participate in an electrostenolytic process. The result is a second power source, labeled E, shunted by a large capacitance. The bioenergetic material occupies a second recess similar to the earlier one. Bioenergetic material also reaches this area by diffusion through the nodal gap. The reticulum is also converging on the location of the next active device on the horizontal axis at the extreme right in this figure. Both the topography and the electrical configuration are the same as on the far left but the signal is applied to the emitter of the Activa. The large capacitance associated with the power supply labeled E is in shunt with the similar capacitance in the collector circuit of the second Activa.

Note that the shape of the action potential applied to the emitter of the second Activa is unimportant. As long as the amplitude of the signal exceeds the threshold level of the second Activa, that circuit will generate a new pulse that will look much like the original pulse as generated at the previous node. A Node of Ranvier does not amplify the signal received from the previous node. It generates a new “action potential” waveform.

The electrical relationship among the three power supplies, P, C & E is important. The values of

99Robertson, J. (1959) Preliminary observations on the ultrastructure of Nodes of Ranvier, Zeit. fur Zellforsch. vol. 50, pp. 553-560
\(C \) & \(P \) must be such as to ensure the collector of each Activa is reverse biased. Similarly, the values of \(E \) & \(P \) must be such that the emitter of the Activa is reverse biased except in the presence of the signal pulse from the previous node. Lacking an input signal, the Activa is cutoff and its collector is at the supply voltage \(C \). This “quiescent voltage” is much more negative than that found in signal processing neurons that must handle a bi-phase electrical signal. When this signal arrives, the total voltage on the emitter compared with the base must forward bias the Activa momentarily. If this occurs, the regenerative cycle will begin and a new action potential will appear at the collector terminal of the Activa. This action potential may have a positive amplitude slightly larger than the absolute value of the quiescent voltage of the axon segment (the cutoff voltage) because of the capacitive overshoot found in some regenerative amplifiers.

The topography of each power supply connection need not occupy the entire circumference of the axon. Rydmark & Berthold have examined the circumference of at least one nodal lemma in detail. About 30% of the circumference was covered with a coating, the putative area of the electrostenolytic process associated with the power supply. This external coating is usually reported as an electron opaque material.

The physical relationship of the three power supplies is also important. The walls of the nodal gap form a constricting channel between the grounding terminals of these power supplies and the surrounding perinodal interneural matrix. If an experimenter places a probe in the perinodal space, the potential detected by that probe can be very complicated. It can be due to both displacement and conductive currents flowing in the impedance of the nodal gap fluid. The conductive current is the sum of the currents flowing from all of these power supply connections to the perinodal space. The displacement currents are due to both the pre-nodal and post-nodal signals being capacitively coupled to the perinodal fluid via the material in the nodal gap.

It is important to note that the illustrated circuit topography of the Node of Ranvier is the same as that predicted for the retinal ganglion cells based entirely on measured external waveforms, Section 9.5.

Figure 9.4.3-1 Comparison of currents generating the action potential in the switching Node of Ranvier (or the conexus within a ganglion cell). See text.
9.5 A functional synapse as the electrolytic connection, a type 3 conexus, between neurons

Shepherd has summarized considerable material related to the synapse100. The 3rd edition of this textbook (1994) is basically a reprinting of the 1st edition. Some of the drawings are unrelated to any functional framework related to the operation of the neurons. While the material is interpreted in terms of the Dual Alkali-ion Theory, the dimensional details are useful.

A more recent summary of the synapse has been provided by Pannese101.

Currently, the biological community has become divided over their chemically based concept of a synapse. Most of the documentation suggests that a wide variety of neurotransmitters are released at the presynaptic terminal, traverse the synaptic gap and stereochemically unite with the surface of the postsynaptic terminal. Other literature treat the “neurotransmitters” as intermediaries. In this concept, the neurotransmitters are catalysts controlling the movement of ions between the presynaptic and postsynaptic terminals. These two concepts of the chemically-based synapse are intrinsically incompatible. This leaves understanding of the synapse in a state of limbo as noted by Messenger, et. al. in Section 9.5.4. Lack of an operational mechanism for the neurotransmitter as an active participant has led to three difficult situations:

1. a proliferation of putative neurotransmitters satisfying different proposed synaptic scenarios.

2. a proliferation of putative neurotransmitter receptors to accommodate the putative chemical neurotransmitters.

3. Virtually no definitive explanation of how these neurotransmitters are released from the presynaptic tissue.

The synapse plays a crucial role in the connection between elements of the neural system. This role is an electrolytic one as opposed to a chemical one. The synapse is fundamentally an active electrolytic junction between two neural conduits that is external to a neuron. It can be used to transmit electrotonic or phasic signals. The multitude of caricatures in the literature attempting to describe the chemical events taking place within the synapse, such as figure 4.8 of Shepherd, should be ignored. Most of the activity described in these caricatures relate to the electrostenolytic processes associated with the synapse and not the transmission of signal information across the “gap.”

Defining the synapse from a gross morphological perspective is difficult because of the variety of morphologies encountered. At a cytological level, it appears that the smallest active area that can be considered an Activa is about 100 Angstrom in diameter. This “unit Activa” is frequently formed into two-dimensional arrays to form a practical Activa. These practical Activas appear in conexusxes of three different styles.

Style 1. The structurally simplest synapse is the in-line conexus found between two stage 3 propagation neurons. The Activa array is unitary, planar, perpendicular to the axes of the adjacent neurons and two-dimensional. The dendrites typically connect to only one axon.

Style 2. The next simplest synapse is frequently found at the interface between photoreceptor cells and subsequent signal processing neurons. In this case, multiple dendrites from a single stage 2 signal processing neuron may converge on a single pedicle. The result is a synaptic structure containing multiple small Activa arrays. The total area of the Activa arrays determines the total current carrying capacity of the multi-terminal synapse.

Style 3. The most difficult synaptic configuration to define appears between signal processing neurons and the dendritic structures of ganglion cells (Purkinje cells within the CNS). This configuration involves dendritic extensions containing a large number of spines that contact similar axonal extensions over a significant distance. The analogy is two octopuses making love by extending two arms in parallel with the suckers of those arms paired. The total synaptic area consists of the area of the paired conexusxes. This style synapse configuration may also be used extensively within the CNS to form “memories.”

The specific electrophysiology of the synapse can vary significantly due to differences in the electrical parameters of the elements associated with it.

The Activa of a synapse is operated in the common base configuration. In this configuration, it provides a very low impedance connection between two neural conduits in the orthodromic direction if it is properly biased. To be properly biased the emitter-to-base potential must be positive and the collector-to-base potential must be negative. The base is normally connected by a high impedance, formed by a confined region of electrolyte, to the local INM. There is no voltage source associated with a membrane between the base and the local INM. The collector-to-base potential is normally negative due to the electrostenolytic potential of the postsynaptic dendroplasm. The origin of the emitter-to-base potential is frequently more complex.

In electrotonic cases such as the synapse between the photoreceptor cells and the bipolar cells, the photoreceptor cell axoplasm potential must be expressed in terms of the local INM of the synapse. This reference point is different than that normally used to describe the distribution amplifier of the photoreceptor cell. The common emitter circuit of the photoreceptor cell is connected through its poda terminal to the IPM. It is also probable that the base connection of the distribution amplifier is also connected to the IPM instead of the INM. Therefore, it is necessary to consider the potential difference between the local INM and the IPM.

In many phasic cases, the signal at the presynaptic terminal of an axon segment is a positive going waveform impressed on a very low negative quiescent DC potential of the axon segment plasma. Such a signal can result in a positively biased emitter-to-base potential at the synapse after the signal has overcome the quiescent DC potential. This quiescent DC potential forms at least a part of the threshold associated with the transfer of phasic signals through a synapse or a Node of Ranvier. As in the electrotonic case, the collector-to-base potential of the Activa forming the synapse is normally biased negatively by the dendroplasm of the following neuron or the plasma at the antidromic end of the axon segment.

Further detailed investigation will be required to determine whether some phasic synapses are able to operate as a monopulse action potential regenerators based on the amount of capacitance provided by the postsynaptic connection.

In the general case, under normal operating conditions, the synapse should not be considered a “rectifier.” In most electrotonic cases, it is not used to change the shape of the signal being transmitted. However, it does prevent the flow of both quiescent and signal related electrical currents in the antidromic direction.

In the following discussion of the morphological styles of synapses, only the electrophysiology of the style 1 synapse will be explored in detail. The characteristics of the other styles are highly application specific and involve difficult modeling procedures to evaluate their overall electrical characteristics.

xxx Typical active circuits between and within neurons MERGE with above

One of the primary premises of this work is that all connections between morphologically identifiable neurons in animals involve active electrical circuits. This is obviously a controversial position. However, the fundamental circuit discussed above, and explored in depth for the Node of Ranvier, is easily configured to satisfy all of the requirements of the neural system. Furthermore, the bioenergetic requirements of the electrical system can be satisfied by a variety of readily available bioenergetic materials. While these materials may consist of those materials frequently named in the literature as neurotransmitters or neuroreceptors, GABA, glutamate, etc., other materials can also be used. The primary requirement is that they participate in reversible reactions that typically furnish electrons through electrostenolysis when they proceed toward the lower energy state. This lower energy state normally involves glutamine combined in any of a variety of chemical forms.

Chemically based neuron interconnections will not be discussed, or debated, in this work. If desired, the reader can consider the relevant parts of this section as the electrical equivalent circuit for his conception of a chemically based interconnection.

There are two primary forms of active circuits between sections of conduit within the animal neural system, external terminations and internal processing circuits.

9.5.1 The style 1 synapse typical of stage 3 connections EMPTY
9.5.1.1 The in-line characteristics of the style 1 synapse

The literature contains a number of estimates of the in-line impedance of a synapse based on the assumption that it can be considered a simple passive resistance. A number of estimates of the time delay between the input signal and the output signal also appear based on a different assumption, that the synapse is a diffusion controlled chemical pathway. These conceptual estimates should not be relied upon. When biased for in-vivo operation, the synapse is an active conexus containing an Activa. The in-line impedance of such a circuit must consider both the performance of the Activa and the associated circuit elements.

Looking at the Activa alone, its in-line impedance depends on its bias conditions. If the collector terminal is not biased negatively with respect to the base, the Activa exhibits an infinite resistive impedance between these two terminals in both directions. If the collector terminal is biased negatively with respect to the base, the resistive impedance between the emitter and the collector is asymmetrical and depends on the emitter to base potential. No current will flow from the collector to the emitter under any circumstances under these conditions since the collector diode is reverse biased. The current that flows from the emitter to the collector does not depend on the voltage between these two terminals. Because of this fact, the apparent impedance cannot be described as a resistance. The current that flows, by transistor action, is controlled by the emitter to base voltage and is exponential. Thus, the forward impedance of an Activa within a synapse is defined as a transimpedance. The transimpedance is the apparent current flow from the emitter to the collector of the Activa as a function of the emitter to base voltage. This function is shown in [Figure 8.5.1-1(c)]. At zero voltage, the transimpedance is very high. For positive voltages, the current increases rapidly. As noted in [Section 8.3.2.1.1], the transimpedance can be described by either the static transimpedance or the dynamic transimpedance as appropriate. The forward dynamic transimpedance of a typical synapse is very low under operational conditions. This impedance is frequently lower than the series impedance associated with the conductive currents within the plasmas of the circuit. The precise measurement of the Activa transimpedance requires the Ussing chamber approach to impedance measurement in order to eliminate the plasma impedances.

9.5.2 The style 2 synapse typical of stages 1, 2 & 4 connections

Shepherd has described this style two synapse as a divergent synapse, a single pedicle interfacing with multiple neurites.

9.5.2.1 The synapse at a pedicel

Because of the great variability in topography available within the neural system to make interconnections in the most functionally efficient manner; selecting a prototype configuration for further analysis is very difficult. From the perspective of a functional termination, whether the post junction structure is myelinated or not is irrelevant. All of the external terminations are exposed to the surrounding INM--by gaps in the myelin for myelinated conduits. The important functional characteristic is the total capacitance placed in shunt with the input and output circuitry of the termination. This parameter plays a major role in determining the functional mode of the junction. The two primary roles of external terminations are acting as an electrotonic connection or acting to regenerate action potentials. The electrotonic connection is the most common and of primary interest in vision.

The description of a specific external axon termination is straight forward. It is primarily a matter of describing the morphology in the context of the Node of Ranvier with ramifications. Probably the simplest ramification is the spherule. A spherule is usually described in vision as the termination of a photoreceptor cell that connects to only one orthodromic neuron. A spherule

is a paranode of an axon segment that happens to be at the terminal end of a photoreceptor axon. These axons are short enough that they do not require myelination. The spherule performs as part of a low impedance electrotonic interconnection just as in the Node of Ranvier. The spherule does not produce an action potential unless excessive capacitance is connected to the circuit by an investigator.

A more complicated termination for a photoreceptor cell is required to interconnect with several orthodromic neurons. This more general morphological structure is the pedicle. In all other functional respects, it is just like a spherule. Shichi provides a caricature of the spherule and pedicle that are nearly identical. In a more general context, pedicles are found at the termination of photoreceptor cells and any other signal processing neuron interconnecting with multiple orthodromic neurons. The photoreceptor pedicles are found in the outer lateral layer of the retina shared with the horizontal cells between the outer fiber layer and the outer plexiform layer. The bipolar cell pedicles are found in the inner lateral layer of the retina shared with the amacrine cells between the inner fiber layer and the inner plexiform layer.

The morphology of pedicles is three dimensional and difficult to illustrate adequately on paper. In addition, there are interconnections on the terminal surface of the pedicle, described as basal contacts, and interconnections folded more deeply into the pedicle, described as invaginating contacts. It is also important to note there is no requirement that every dendritic structure passing near a specific pedicle make contact with that pedicle.

Recently, the work reported in the literature related to this area has begun to merge with the electrophysiological studies of the same structures. The recent papers describing a pedicle by Osborne, Froelich, Vardi are useful and include references to earlier work. There are minor morphological and major electrophysiological differences between this work and that presented by those authors. The underlying differences are three. This work defines a manifold within the pedicle morphology in which all neural elements at that location can share bioenergetic materials. Second, this work defines the contacts between neurons as fundamentally electronic and unidirectional. Third, the likelihood that one or more of the contacts within the pedicle geometry will be to a lateral cell, with a poditic terminal and an axon sharing a common plasma sheath, must be considered. It is also appropriate to consider how areas of different apparent electron density are shown in this type of figure.

Figure 9.5.3-1 presents the details of a pedicle based on this theory. The artwork is modeled after a figure appearing in Vardi. However, this figure;

1. does not maintain the symmetry of neuronal structures of Vardi. The invaginating structure on the left is a common dendrite. It may be associated with a bipolar cell or as labeled here, a simple horizontal cell dendrite (HD). The invaginating structure on the right is taken to be a lateral cell. The upper half represents the poditic structure of a horizontal cell (HP). The lower half (HA) represents the axon of the same horizontal cell. Notice the single bilayer membrane separating these two halves. It is proposed that this internal bilayer membrane is non-specialized and tum to make a tight lap joint at each surface of the cell plasma membrane.

2. shows two separate classes of vesicles. Those shown scattered throughout the drawing are not directly relatable to the signal transmission function. Those shown connected to the ribbon of the pedicel are associated with the transmission function. They are in electrical communications with the reticulum of the photoreceptor cell on one side and with the specialized axolemma on the other. They may also play a structural role. There are references in the literature to vesicles that are embedded in the axolemma. These references appear in papers supporting the assumption that the vesicles are the source of a chemical neurotransmitter used to excite the nearby neurite structure. Such vesicles are difficult to photograph explicitly and adequately. They are not required in this work. The figure by de Blas of a synapse in brain tissue presented in Matthews does not appear to show any vesicles opening into the inter-conduit space. Neither does it show the hydronium liquid crystal found in part of this space. The spacing between the two bilayer membranes is within 80-100 Angstrom as expected.

3. shows all bilayer membranes at their conventional thickness. Any additional thickness associated with these membranes is an artifact (potentially useful) of the observation technique. In Vardi, these thicker regions are described as electron dense.

4. shows a manifold occupying a central location where it can support the bioenergetic needs of all neurons. The manifold is not limited to a specific area. However, it is excluded by the laws of diffusion and probability theory from the very narrow spaces between the cells occupied by the Activas. The manifold reaches the top of the two invaginated structures by passages that are out of the plane of the paper, extends down between the lower neurons, and is in contact with the INM between the inner and outer limiting membranes of the retina.

5. adds several reticuli associated with the signal carrying axoplasm of each cell. These are shown as the space between the dashed lines. For purposes of convention, the reticulum of the pedicle is shown as containing two black areas of specific interest, the vertical bar known as the ribbon and the arciform structure at the lower end of the ribbon. A reticulum is also shown in the dendrite of a horizontal cell (HD) on the left. This reticulum contacts the specialized dendrite membrane where it most closely approaches the pedicle and at an area at the top where it is contact with the manifold. The reticulum then goes into the paper to...

contact the internal Activa of the cell. Two reticuli are shown on the right invagination. The upper one is in the poditic neurite of a horizontal cell. It is shown contacting the specialized podalemma in both the area closest to the pedicel and in an area at the top where it is in electrical communication with the manifold. This reticulum also goes into the paper to contact the internal Activa of the horizontal cell. The lower reticulum is returning to the plane of the paper from the collector terminal of the internal Activa and contacting the specialized areas of the axolemma. One area of contact is associated with the manifold and the second is associated with the orthodromic neuron, probably of the bipolar morphological type.

6. Shows electrical signal communication between the pedicle and the two horizontal cells, and between the right-hand horizontal cell and the orthodromic neuron at the bottom of the page, by means of active electrolytic semiconductor devices (Activas). These Activas may consist of one device at each location or a small group of devices in parallel, as shown here, where more power handling capability is required.

7. Shows several other structures associated with neurons at the bottom of the figure. However, lacking direct contact with the reticulum of the pedicle, it is doubtful that they are in signal communications with that neuron.

[[xxx need supplemental views of electron dense regions and transistor circuit overlays]] [[xxx new paragraph after completion of the description]]

The photoreceptor cells and all of the neurons interfacing with them process electrotonic signals. Therefore the binary concept of ON and OFF cells is of limited utility. As shown elsewhere, what is known is that the polarity of the signal emanating from the axon of a lateral cell is opposite to that of the input signal on the poditic neurite and of the same polarity as the input signal on the dendritic neurite.

9.5.2.1.1 The electrical circuit at the style 2 synapse EMPTY

9.5.2.1.2 The bioenergetic circuit at the style 2 synapse

Although the paper by Vardi, et. al. assumes signal transmission at the synapse based on chemistry and assumes the signals are treated in a binary manner, the data regarding the location of the various materials they investigated can be extremely useful in developing a more general theory.

Their preparation protocol employed glutaraldehyde for most experiments, a close relative of the glutamates. It may be a solvent for the glutamates and possibly GABA as well. Their imagery was at less than x42000 that did not show membrane bilayers distinctly.

Two details: this work assumes the cone synaptic complex of Vardi, et. al. corresponds to the photoreceptor pedicle of this work. Words below that within wiggly brackets were added by this author for context.

Some significant preconceptions were introduced into their paper:

Their abstract begins with a fundamental preconception: “The cone ‘synaptic complex’ is a unique structure in which a single presynaptic axon secretes glutamate onto processes of bipolar cells (both ON and OFF) and horizontal cells.”

Their results included the statement: “To identify the ON cells we first looked at peripheral cone terminals in the monkey because here, all invaginating dendrites are ON, and quite likely all dendrites forming basal contacts are OFF. In other mammalian retinas, this segregation into invaginating/ON, basal/OFF, is true for most cell types, but not all.”

It is unusual to find a “unique structure” of a cell, that secretes a non-protein material of the complexity of a glutamate. It is equally unexpected to find the molecular identity of the postsynaptic receptors of this putative secretion remains largely unknown and unlocalized at
They provide two important datum in their abstract:

+ Invagination (probably ON) bipolar dendrites in the monkey and rat express the metabotropic glutamate receptor, mGluR6. The stain is intense on the dendritic membrane where it first enters the invagination, and weak at the tip nearest to the ribbon. The cone membrane is electron-dense where it apposes the intense stain for mGluR6.

+ The ‘cone’ membrane is electron-dense opposite to the receptor sites on both ON and OFF bipolar cells.

They provided a range of pertinent data in their results section:

+ The metabotropic glutamate receptor mGluR6 was identified in the rat retina and localized to the dendritic tips of the rod bipolar cell.

+ Close observation of serial sections revealed that a given dendrite may form a contact at the cone base in one section, and occupy the central element position in another.

+ At peripheral cone terminals of the monkey, all invaginating dendrites were stained, and all dendrites forming basal contacts were unstained.

+ 70% (28/41) of the stained dendrites terminated as central elements of the triad

+ At cone terminals of the rat, about half of all dendritic tips contacting the cone (41/79) stained for mGluR6, suggesting that about half of the bipolar cell types expressed this receptor.

+ Many of the stained dendrites contacted the cone at basal-like junctions. The cone membrane apposing these stained dendrites was often electron-dense or simply dark due to the immunostain was not clear.

+ When staining intensity in the invagination dendrites (both the monkey and rat) was relatively weak, it did not concentrate at the apex, i.e. at the region nearest the site of vesicular release. It concentrated near the base of the invaginating dendritic tips, particularly at the region apposed to the cone. Just beneath the cone membrane at this site is a layer of fluffy electron-dense material.

+ When stain was observed in the horizontal cell terminals, it appeared at the electron-dense membrane, subjacent to the presynaptic ribbon.

+ The stain was distributed along the electron dense horizontal cell membrane, facing the other horizontal cell terminal. Apparently, the ionotropic glutamate receptor is on a narrow strip of horizontal cell membrane along the synaptic ridge.

The relevant findings presented in their discussion include:

+ All of the chemical receptors that they localized were present in apposition to an electron-dense membrane.

+ The glutamate and GABA receptors localized to the cone synaptic complex by immunocytochemistry correspond to junctions previously identified by morphology.

+ The glutamate receptors on bipolar dendrites are all located at relatively large distances from the (putative) site of vesicular release.

+ mGluR6 localizes not to the apex, but to the base of the invagination dendritic tip (monkey) or to the basal-like junction (rat).

+ The cone membrane in apposition to both types of glutamate receptor bears a noticeable
+ The horizontal cell membrane apposed to the GABA$_A$ receptor on bipolar dendrites bears a fluffy, submembranous electron-dense material.

+ GABA receptors might reside in apposition to this electron-dense region at the unspecialized cone membrane.

+ They “expected a synapse from the horizontal cell to the cone, because of evidence that the mammalian cone has an inhibitory surround. However, none of the GABA$_A$ subunits localized to cone membrane.”

Some questions left unanswered involved;

+ “All these observations suggest that the monkey horizontal cell terminals release GABA onto both OFF and ON bipolar dendrites. This is puzzling.”

+ “The questions of which subunits are expressed by photoreceptors and whether horizontal cell feedback to mammalian cone is exerted by GABA or a different neurotransmitter remain unsettled.”

Their Figure 8 was described, with credit for the underlying schematic to Raviola and Gilula108, as a tentative match of receptor localization to specialized junctions at the cone synaptic complex. Correlating their Figure 8 with the electrical circuit performance presented above, Figure 9.5.3-2 results. [This figure ---]

9.5.3 The reported style 3 synapse EMPTY

9.5.4 The “giant synapse” of squid as a hybrid style synapse

Messenger, et. al. have provided a discussion of the giant axon of squid109. The relevant figures are based on hand drawn sketches by Young dating from 1939 and 1973. Their opening quote is interesting. “Despite all the work on squid giant fibres since their rediscovery 60 years ago we still know nothing about how they innervate the mantel muscles and do not really understand how they are themselves activated. In particular we do not know the nature of the transmitters(s) at the largest synapse in the animal kingdom; the ‘giant synapse’ between second- and third-order fibres in the squid stellate ganglion.” This is quite a statement for a book first published in 1995! Much of their discussion concerns the role of glutamate as a possible neurotransmitter. This work redefines the role of glutamate as that of primary neurofacilitator, the fundamental fuel in the electrostenolytic process.

The primary feature and unusual form of the total synapse is evident in the sketches of J. Z. Young and of Martin and Miledi. It can be considered a hybrid of the style 2 and style 3 synapse. Multiple collaterals extend from the postsynaptic fibre to the presynaptic fibre. Martin and Miledi have provided a statistical analysis of the geometry of the squid giant synapse110. They estimated that 15,000 synaptic contacts (boutons) supporting a single synapse (with a total area of 16,312 square microns). The size of the boutons varied from 0.6 to 4 microns in diameter (with a mean of just over one micron). They also found a nominal synaptic gap dimension of 12 nm (120 Angstrom).

96 Neurons & the Nervous System

9.6 The fundamental neural signal decoding (stellite) neuron

The term stellite (with an i) is used as the functional description of the decoding neurons of stage 3. It describes a large number of the morphologically defined stellate neurons and includes a majority of the large neurons of layer IV of the cerebral tissue.

Function is used here in the context of the underlying process of a given neural structure, and not as frequently found in neuroscience texts to describe the purpose of the structure.

The following material also appears on the authors website at:
http://neuronresearch.net/neuron/files/neuralcoderecovery.htm

9.6.1 The morphology and electrophysiology of the stellite cell

The typical stellite neuron is typically found at the orthodromic terminal of a long neuron that is contained within a nerve or commissure over a majority of its length. However, it may also be found at the orthodromic end of any stage 3 signal projection neuron. In these situations, the stellite neuron has a very simple dendritic tree (potentially synapsing with only a single pedicle). Its poditic tree is similarly simple or degenerate. Conversely, its axon may interface with a broad array of stage 4, 5 or 6 neurons. No standardized symbology has been found for the stellite neurons within the neuroscience literature.

9.6.2 The topology of the fundamental neural code recovery circuit

Figure 9.6.3-1 shows the fundamental neural configuration found in all stellite (signal recovery) neurons in Frame A. This configuration is the same as that used in virtually all neural circuits. However, the parameter values are different.

- The impedance in the base (poditic) circuit is so low, the internal feedback due to that impedance is not sufficient to support overall circuit oscillation.
- The capacitor shown at the lower right is so large relative to the axon impedance shown at upper right that the output circuit acts as a low pass filter. As such, it integrates the currents generated by the applied action potentials.
- The applied signal is a phasic signal but the output at G is its time integral, an analog signal.

9.6.3 The recovery of an electrolytically monopolar pulse train

Frame B shows the signals at the axon of the stellite neuron in the absence of the large capacitor. The waveforms are duplicates of the input action potentials. The 1-2 ms wide waveforms are shown widened for pedagogical purposes.

Frame C shows the signals recovered at G for the condition where the input action potential stream is discontinuous. It consists of one or more individual monopulses from an electrolytically monopolar signal channel. The shape of the recovered signal depends on the time-delay between the pulses. At low time-delay, high pulse rates, the signal rapidly reproduces the nominal amplitude of the analog stimulus applied to the ganglion neuron generating the pulses.

The last statement is consistent with the proposal that no computation occurs within the fundamental circuits of stage 3. In the fundamental stellite circuit, the recovered analog signal is a copy of the analog signal applied to a single ganglion neuron.
Frame D shows the signals recovered at G for the condition where the input action potential stream is continuous. The output at G achieves an average potential (shown here as 0.5) in the absence of any stimulus to the associated ganglion neuron, which operates in a free-running pulse mode. For a bipolar analog signal causing a reduction in the time delay between pulses, the output rises (with a temporal profile that reflects the time delay interval between the pulses). The ultimate height reflects the amplitude of the original analog signal.

Note the long time required to recover the amplitude of a highly negative modulation of the ganglion neuron (resulting in long time intervals between the action potentials). Meaningful output is delayed considerably. This condition is commonly recognized in the visual system where the difference between the green and red signaling channels (commonly described as the Mid-wavelength minus the Long-wavelength signal). The condition is memorialized in the "mixed highs" form of color television transmission.

Berry & Pentreath recorded a great variety of neural signals (generally in pairs) among lower species such as the large air-breathing fresh water ramshorn snail, Planorbis comeus. They prepared multiple papers reporting their exploratory research. Figure 9.6.4-2 shows several examples of signal recovery by stellite neurons from the applied stimulation in-vivo or using large neural masses removed with minimal disturbance. They described the stage 3 neuron propagating the action potentials as the giant dopamine-containing neuron (GDN) of that species. However, their discussion indicates this neuron was not an interface neuron dispensing dopamine to the glandular or CNS systems, but was delivering its signals via a synapse to an
orthodromic stellite neuron for analog waveform recovery.

Figure 9.6.4-2 Postsynaptic signal recovery in the GDN of Planorbis corneus, an air-breathing fresh water ramshorn snail. Waveforms in vertical pairs; bottom is stimulation, top is the signal recovered from the orthodromic neuron acting as a signal recovery (decoding) stellite neuron. Pairs are from different preparations. Calibration bars are 10 mV in top row and 40 mV in bottom row. Time scales are 10 sec in (A) and (B); 2 sec in (C). See text. From Berry & Pentreath, 1987.

The leftmost pair (A) shows the action potential pulse stream generated by a stage 3 neuron (below) in response to a square wave stimulus with the recovered shape of the square wave (above) from an orthodromic stellite neuron (producing a positive going representation). (B); A negative-going representation (top) from an original stimulation by a square pulse with an additional prominence near the start of the pulse (several extraneous pulses are shown with this waveform). The lower waveform shows the encoded action potentials with the higher density pulses resulting from the higher amplitude portion of the original stimulation. (C); waveform pair similar to that in (A) but with a negative-going recovered pulse. The action potential pulse stream in (B) and (C) show the encoding neuron was subject to different bias conditions than in (A). The pulse rate in (A) is nearly constant at about 1 pps. The pulse rate of about 4 pps in (C) is indicative of a higher stimulus amplitude and leads to a more faithful representation in the recovered waveform. Note also the somewhat higher pulse rate during the initial pulses leading to a more rapid fall in the recovered waveform. The scale used in (C) makes the delay between the start of the action potentials and the beginning of the recovered waveform more obvious.

All of the waveforms of Berry & Pentreath are in excellent agreement with those predicted by the Electrolytic Theory of the Neuron presented above and in Chapter 2.
9.6.4 The recovery of additional information from more complex neural code

The previous discussion related to the fundamental stellite decoding circuit. By changing the impedance values of the fundamental circuit only slightly, additional information can be extracted from the ganglion neuron signal stream. Figure 9.6.5-1 shows four of these modified circuits and their output.

- Frame A shows the fundamental circuit regenerating the analog signal applied to the ganglion neuron.
- Frame B shows the circuit outputing only the initial pulse for use in alarm and timing circuits.
100 Neurons & the Nervous System

- Frame C shows the circuit modified for two inputs. The resulting output is a pulse width proportional to the difference in timing between the two inputs, particularly useful in auditory source location.
- Frame D shows the circuit used as a coincidence circuit comparing two inputs.

All of these output signals are obtained using the same basic stellite circuit with simple impedance value and bias changes.

References

9.7 Two functional varieties of the hybrid ganglion cell, and the stellate cell of stage 3

The ganglion cells of the retina are prototypical encoding neurons used to encode an electrotonic signal received from a stage 2 signal processing neuron into a phasic signal prior to transmission over a stage 3 projection circuit to a stage 4 signal processing neuron. The Purkinje cells of the cerebellum and the pyramid cells of other CNS engines are other cell types performing the same function. The typical projection neuron has been uniquely optimized to transmit information over distances measured in tens of millimeters to meters. To accomplish this feat, the typical projection neuron includes multiple functional units in series. Each of these units after the first and before the last contains a Node of Ranvier and an axon segment. The last functional unit consists of a pedicle electrically matched to the last axon segment. The first functional unit consists of a conexus embedded in the soma of the cell that is hybridized. It accepts electrotonic signals like a type 1 conexus and generates action potentials like a type 2 conexus. The action potentials are delivered to an axon segment that is specialized more than most and is labeled an initial segment.

The ganglion cells take on two distinct electrophysiological roles using the identical physical morphology and cytology. In the first case, the conexus within the soma of the cell operates much like a Node of Ranvier. It does not generate an action potential in the absence of an input signal. However, in the case of this type of ganglion cell, the input is a unipolar electrotonic signal. The cells output, the distance between its action potentials, becomes a function of the amplitude of that electrotonic signal. This type of ganglion cell is known as a parasol ganglion cell.

In the second case, the conexus within the soma operates as a free-running oscillator. It generates a series of equally-spaced action potentials in the absence of any input signal. This type of ganglion cell receives a bipolar electrotonic excitation signal. The cells output, the distance between its action potentials, becomes a function of the amplitude and polarity of the input signal. This type of ganglion cell is known as a midget ganglion cell.

Both of these ganglion cells, and similar hybrid projection neurons, deliver their signals to a stellate cell. The stellate cell is topologically similar to the pyramid cell discussed in Section 10.4. However, it typically receives phasic signals and outputs an electrotonic signal. The stellate cell accomplishes this conversion by acting as an integrator. To perform this function, its internal conexus operates exactly like the conexus of a pyramid cell. However, this conexus has a large capacitor attached to the collector terminal of its Activa. The electrotonic signal produced is passed to signal processing neurons through a synapse as discussed in Section 10.8.

9.8 Special topics:
9.8.1 Signaling properties of stage 3 neurons on specific paths

Several research teams have explored specific neural paths, generally within the CNS of lower species of Chordata and some primates. **Section 11.7.2** reviews the work of Cleland, Dubin & Levick involving the waveforms of the visual modality between the retina and the LGN of the cat. It also reviews the work of Urey, Reppas & Reid concerning the same path and its extension to the occipital lobe (visual cortex).

9.8.2 The giant axon of squid as a timing mechanism-locomotion generator

The giant axon of the squid is not a stage 3 projection neuron. It is a special purpose stage 6 signal distribution neuron with other properties found in analog neurons. Like other members of the mollusc family, this neuron is not myelinated. However, to achieve its operating characteristics, it does depend on the arrangement of a large number of ancillary neuron surrounding it to provide effective capacitive isolation from the fluid matrix surrounding it (but not to the degree achieved through myelination in Chordata).

The main function of the giant axon is to provide a “tapped delay line” using a diffusion-based signaling mode. As a result, the dendrites of subsidiary stage 6 neurons (also diffusion-based in the mollusc) access the electrical potential associated with the diffusing signal at equally spaced delay intervals. The result is a rhythmic contraction of the set of targeted muscles and thereby implementation of a swimming motion.

The octopus uses a similar set of locomotion generators at two distinct neurological levels. The lower level provides stimulation to a set of muscles performing a ripple-like motion that is typically used to cause a single tentacle to encircle (and thereby grab and hold an object). Alternately, a higher level locomotion neuron can coordinate the activity of multiple lower level locomotion neurons to implement the frequently observed motion of the octopus over terrain. The octopus does not normally use its locomotion generators to support swimming. Instead, it relies on jet-propulsion to move it rapidly through the water with its tentacles trailing behind its body.

It is not clear whether fish (members of Chordata) employ a locomotion generator of the type found in Mollusca or rely upon lookup tables associated with their stage 6 neurons. Similarly, reptiles and amphibians may rely upon either locomotion generators or lookup tables (or both). Mammals that have returned to the maritime environment almost certainly rely upon sophisticated lookup tables developed from their original terrestrial evolution.

9.8.3 The delay associated with Activa and related circuits in Chordata

There appear to be three major types of circuits employing Activa in different ways within the chordate neural system. Type 1 will be assigned to Activa found within the soma and neuritic structures of a neuron. Type 2 will be assigned to the Activa employed within a Node of Ranvier interfacing between two axon segments. Type 3 will be assigned to the Activa employed as interfaces between separately identifiable neurons.

It is useful to review the delays introduced by the various types of circuits used in the neural system. In general, it is the overall circuit that determines the total delay associated with a specific neuron. The Activa alone being a very small feature (with gap dimension between the two lemma on the order of tens of Angstrom) introduces a very small circuit delay associated with the transfer of charge between its emitter or base terminals and its collector terminal. The delay is difficult to measure in the laboratory because of the very much larger delays associated with ionic conduction within the various associated plasmas. However, best estimates by investigators, and the theoretical values based on modeling the junction of a liquid crystalline semiconductor device, suggest the delay within the Activa is on the order of microseconds to tens of microseconds.

The local circuit containing an Activa exhibits a delay largely controlled by the circuit. In the case of an Activa configured to generate an action potential within the soma (typically within
102 Neurons & the Nervous System

the hillock) of a neuron,

• the delay associated with the switching associated with the Activa is typically described as less than tens of microseconds.
• the delay associated with the discharging of the axoplasm potential is dominated by the capacitance of the axolemma, the resistance of the collector to base circuit through the Activa and the difference between the threshold voltage and the saturation voltage of the axon to ground circuit. This total axon circuit delay is typically in the 0.5 msec range.
• The delay associated with the dendritic circuit prior to the dendrite reaching the threshold is a variable when measured in-vitro because of the artificial stimulus used. In-vivo under natural stimulation, this delay tends to be much shorter than the 0.5 msec associated with the axon discharge delay, but may under special conditions approach an additional 0.5 msec delay.
 • Dendritic circuits containing band pass filters will exhibit a delay characteristic of the filter.
 • Long dendrites frequently found in correlators may introduce significant delays on the order of 0.5 msec.

9.4.3.2 The delay associated with signaling within stage 3 neurons

9.4.3.2.1 The delay associated with a single type 1 conexus within a soma of stage 3

[xxx address analog versus pulse situations]
Several investigators have attempted to measure the delay between the emitter of an Activa and its collector. However, the experiment is extremely difficult under either in-vivo or in-vitro conditions. The primary task is to avoid including the delay associated with a finite amount of the electrolyte associated with the input and output plasmas. Alternately, the measurements that have been made suggest the delay within an Activa is less than 10⁻⁸ seconds. This small delay is trivial in any calculation regarding the overall operation of even the smallest neuron.

9.4.3.2.2 The transmission delay of a type 2 conexus, within a Node of Ranvier

[xxx delay is due to the charging process, not the Activa]
The conexus within a Node of Ranvier operates in the same manner as the conexus within the soma of a stage 3 neuron. The delay between a point on the leading edge of the incoming phasic signal and the similar point on the leading edge of the outgoing signal is typically [xxx check with other sections] one millisecond in warm-blooded chordates.

9.4.3.2.3 The transmission delay of a type 3 conexus, a synapse, of stage 3

[xxx The delay associated with a synapse within stage 3 that is not acting as a regenerative oscillator, is a few microseconds or less and can be ignored when discussing physiology.
Table of Contents

9 Stage 3, Signal Transmission Neurons .. 2
9.1 Introduction .. 2
9.1.1 The fundamental topology of the stage 3 signal projection circuit 4
9.1.1.1 Equivalent circuit of the stage 3 signal projection circuit 5
9.1.1.2 Equivalent circuit of the myelinated axon element CONTENT 8
9.1.1.2.1 Historical Background .. 8
9.1.1.2.2 The longitudinal cross-section of an axon with or without myelination) ... 11
9.1.1.2.3 Methods of myelination in the neural system 12
9.1.1.3 The electrical circuit of the axon as a transmission line 14
9.1.1.3.1 Failure of the archaic “Hermann Cable” concept 15
9.1.1.4 Application of the GWE to the myelinated axon 19
9.1.1.4.1 The fundamental GWE .. 19
9.1.1.5 Application of the GWE to neuron operations 21
9.1.1.5.1 The cylindrical transmission line EDIT 21
9.1.1.5.2 Physiological model for a signal projection neuron 22
9.1.1.5.3 The electrical transmission line model of a signal projection neuron EDIT 23
9.1.1.5.4 Recent modeling of axons based on passive models EDIT ... 26
9.1.1.6 The relaxation oscillator of stage 3A and Nodes of Ranvier . 30
9.1.2 The propagation of action potentials—the dynamic situation 30
9.1.2.1 Background .. 30
9.1.2.2 Ionic velocity in solvents EDIT 31
9.1.2.3 Ionic velocity in gels ... 31
9.1.2.4 Energy propagation along a coaxial cable EMPTY 32
9.1.2.4.1 The capacitance of the axon segment 32
9.1.2.4.2 The inductance of the axon segment 33
9.1.2.5 The impedance & phase velocity of the ideal coaxial cable EDIT 35
9.1.2.6 Propagation over a lossy coaxial cable—real axon 39
9.1.2.6.1 Theoretical intrinsic/phase velocity and attenuation on a lossy line ... 41
9.1.2.6.2 The theoretical impedance of a lossy cable 41
9.1.2.6.3 Intrinsic pulse dispersion along a lossy line 42
9.1.3 Modeling stage 3 myelinated neuron branch points 42
9.1.3.1 Comparison of branching models 43
9.2 The fundamental encoding neuron, the pyramid or ganglion neuron or hemi-node 46
9.2.1 Background .. 48
9.2.1.1 The Visual Modality as an exemplar of the neural system 48
9.2.2 Historical nomenclature problems ... 49
9.2.3 The neural coding ganglion neurons 49
9.2.4 The SERAPE representation of nonlinear circuits 52
9.2.4.1 Refractory period—theory vs measured data 55
9.3 The actual codes used in signal propagation 56
9.3.1 The Neural Code used in the magnacellular (brightness) and other monopolar pathways ... 57
9.3.1.1 The IRIG description of the code 57
9.3.2 The Neural Code used in the parvocellular (chrominance) and other bipolar pathways ... 58
9.3.3 The Transfer Functions for the Sum & Difference Neural Codes 59
9.3.4 Examples of sound encoding .. 60
9.4 A functional Node of Ranvier as an exemplar of a type 2 (phasic) conexus 61
Chapter 9 List of Figures 8/1/16

<table>
<thead>
<tr>
<th>Figure 9.1.1-1</th>
<th>Conceptual stage 3 neural circuit</th>
<th>..................................... 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 9.1.1-2</td>
<td>Topology of the stage 3 signal propagation circuit ADD</td>
<td>..................................... 6</td>
</tr>
<tr>
<td>Figure 9.1.1-3</td>
<td>Sequential waveforms within a stage 3 signal propagation circuit ADD</td>
<td>..................................... 7</td>
</tr>
<tr>
<td>Figure 9.1.1-4</td>
<td>Illustration of various electrical equivalent circuits of the axolemma</td>
<td>..................................... 10</td>
</tr>
<tr>
<td>Figure 9.1.1-5</td>
<td>The axon segment as a multi-terminal electrolytic cell</td>
<td>..................................... 12</td>
</tr>
<tr>
<td>Figure 9.1.1-6</td>
<td>The mechanism of myelination differs in the CNS & PNS</td>
<td>..................................... 13</td>
</tr>
<tr>
<td>Figure 9.1.1-7</td>
<td>A comparison of coaxial cable configurations</td>
<td>..................................... 15</td>
</tr>
<tr>
<td>Figure 9.1.1-8</td>
<td>Generic neurological transmission line</td>
<td>..................................... 23</td>
</tr>
<tr>
<td>Figure 9.1.1-9</td>
<td>Saltatory conduction in a normal rat ventral root fiber</td>
<td>..................................... 29</td>
</tr>
<tr>
<td>Figure 9.1.2-1</td>
<td>The capacitance and inductance of an ideal axon segment</td>
<td>..................................... 35</td>
</tr>
<tr>
<td>Figure 9.1.2-2</td>
<td>The characteristic impedance and phase velocity along an axon</td>
<td>..................................... 36</td>
</tr>
<tr>
<td>Figure 9.1.2-3</td>
<td>Electric and magnetic fields within an axon REWORK</td>
<td>..................................... 38</td>
</tr>
<tr>
<td>Figure 9.1.2-4</td>
<td>The electrical circuits used to describe an axon (a coaxial cable)</td>
<td>..................................... 39</td>
</tr>
<tr>
<td>Figure 9.1.2-5</td>
<td>Measured impedance (inductive & capacitive) of a real axon</td>
<td>..................................... 39</td>
</tr>
<tr>
<td>Figure 9.1.3-1</td>
<td>A comparison of branching models of stage 3 myelinated neurons</td>
<td>..................................... 44</td>
</tr>
<tr>
<td>Figure 9.1.3-2</td>
<td>Generic branching neurological transmission line</td>
<td>..................................... 45</td>
</tr>
<tr>
<td>Figure 9.2.1-1</td>
<td>The fundamental encoding (pyramid or ganglion) neuron</td>
<td>..................................... 46</td>
</tr>
<tr>
<td>Figure 9.2.1-2</td>
<td>Fundamental circuit topology of the retina as an exemplar</td>
<td>..................................... 48</td>
</tr>
<tr>
<td>Figure 9.2.3-1</td>
<td>The topology, operation and waveforms of the ganglion encoding neuron</td>
<td>..................................... 50</td>
</tr>
<tr>
<td>Figure 9.2.3-2</td>
<td>Measured dendrite waveform under parametric conditions</td>
<td>..................................... 51</td>
</tr>
<tr>
<td>Figure 9.2.4-1</td>
<td>Waveforms on parametric stimulation of a pathologically modified neuron</td>
<td>..................................... 54</td>
</tr>
<tr>
<td>Figure 9.2.4-2</td>
<td>Refractory period of a neuron</td>
<td>..................................... 55</td>
</tr>
<tr>
<td>Figure 9.3.3-1</td>
<td>The steady state transfer functions of the stage 3A encoding neurons</td>
<td>..................................... 60</td>
</tr>
<tr>
<td>Figure 9.3.3-2</td>
<td>Examples of the place code used in the neural system</td>
<td>..................................... 61</td>
</tr>
<tr>
<td>Figure 9.4.1-1</td>
<td>Current flow through the Node of Ranvier</td>
<td>..................................... 64</td>
</tr>
<tr>
<td>Figure 9.4.1-2</td>
<td>Operation of the Node of Ranvier BREAK OUT</td>
<td>..................................... 70</td>
</tr>
<tr>
<td>Figure 9.4.2-1</td>
<td>Repetitive internode segment in caricature and electrical circuit diagram</td>
<td>..................................... 76</td>
</tr>
<tr>
<td>Figure 9.4.2-2</td>
<td>Currents along a myelinated stage 3 neuron with multiple Nodes of Ranvier</td>
<td>..................................... 77</td>
</tr>
<tr>
<td>Figure 9.4.2-3</td>
<td>Saltatory conduction in a normal rat ventral root fiber</td>
<td>..................................... 80</td>
</tr>
<tr>
<td>Figure 9.4.2-4</td>
<td>Peripheral nerve fiber characteristics</td>
<td>..................................... 83</td>
</tr>
<tr>
<td>Figure 9.4.2-5</td>
<td>“Atypical action potential as recorded with external electrodes”</td>
<td>..................................... 84</td>
</tr>
<tr>
<td>Figure 9.4.3-1</td>
<td>Comparison of currents generating the action potential in the switching Node of Ranvier</td>
<td>..................................... 87</td>
</tr>
<tr>
<td>Figure 9.5.3-1</td>
<td>The functional pedicle</td>
<td>..................................... 91</td>
</tr>
<tr>
<td>Figure 9.6.4-1</td>
<td>The decoding stellate neuron and representative waveforms ADD</td>
<td>..................................... 97</td>
</tr>
<tr>
<td>Figure 9.6.4-2</td>
<td>Postsynaptic signal recovery in the GDN of Planorbis corneus</td>
<td>..................................... 98</td>
</tr>
<tr>
<td>Figure 9.6.5-1</td>
<td>Recovery of other information from stellate neurons ADD</td>
<td>..................................... 99</td>
</tr>
</tbody>
</table>
SUBJECT INDEX (using advanced indexing option)

3D .. 27
98% .. 38
action potential . . . 3, 5, 7, 16, 18, 19, 27-29, 42, 47, 49-52, 55-62, 64-68, 71-73, 75, 77, 81, 84, 86, 87, 89, 91, 96-98, 100, 101
Activa . 3, 5, 6, 9-12, 18, 22, 23, 26, 27, 30, 32, 43-46, 49-58, 62, 64-67, 71, 74, 76, 85-90, 93, 100-102
active diode .. 5
alarm mode ... 58
ALS ... 42, 46
amplification ... 64, 66
arborization ... 46
attention ... 19, 48
autocorrelation .. 57
average velocity .. 14, 18, 27, 38, 41, 68, 72, 78, 81-84
axon segment . . . 3-5, 10, 12, 14, 18, 19, 21-24, 27-30, 32, 33, 35-38, 41-44, 46, 50, 57, 62-64, 67-69, 75, 76, 78, 81, 82, 85, 87, 89, 91, 100
axoplasm 7, 9-11, 18, 19, 33, 37, 38, 42, 43, 46, 50, 53-56, 62, 64, 66-68, 71, 76, 89, 92, 102
Bayesian ... 47
bilayer .. 9, 11, 62, 92
bilayer membrane ... 9, 11, 62, 92
bit serial .. 47
bi-stratified .. 46
boundary layer ... 10
cable theory ... 17, 22
calibration ... 7, 80, 98
cerebellum ... 61, 100
chord .. 46
Class 1 ... 55
Class 2 ... 55
coaXial cable .. 14-16, 20-22, 27, 32, 33, 35, 37-41, 45
commissure .. 12, 13, 46, 96
compound action potential .. 55
computation ... 27, 96
computational ... 27, 42, 46
conduction velocity ... 18, 22, 27, 31, 42, 75, 82
conexus ... 36, 42, 61, 81, 87, 88, 90, 100, 102
cross section ... 10
cross-section .. 11, 15
data base ... 72
decoder .. 4
determinants ... 27
diode .. 5, 8, 9, 65, 66, 90
dopamine ... 6, 97
dynamic range ... 57, 58
electromagnetic propagation .. 31
electrostenolytic process ... 9, 65, 66, 68, 69, 74, 86, 87, 95
expanded .. 20, 37, 63
feedback .. 50-52, 54, 55, 95, 96
FEM ... 27
freeze-fracture .. 91
free-running .. 100
GABA ... 85, 89, 93-95
ganglion neuron ... 4, 5, 46, 49-52, 57-59, 71, 96, 97, 99
General Wave Equation .. 14, 16, 17, 19, 20, 22, 39, 74
glutamate ... 85, 89, 93-95
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>potential</td>
<td>55</td>
</tr>
<tr>
<td>resonance</td>
<td>84</td>
</tr>
<tr>
<td>refractory period</td>
<td>52, 55, 67</td>
</tr>
<tr>
<td>receptive layers</td>
<td>84</td>
</tr>
<tr>
<td>quantum-mechanical</td>
<td>12</td>
</tr>
<tr>
<td>rate code</td>
<td>47, 58</td>
</tr>
<tr>
<td>rectifier</td>
<td>46</td>
</tr>
<tr>
<td>refractory period</td>
<td>52, 55, 67</td>
</tr>
<tr>
<td>receptive layers</td>
<td>84</td>
</tr>
<tr>
<td>potential</td>
<td>55</td>
</tr>
<tr>
<td>node of Ranvier</td>
<td>2-4, 18, 22, 26-29, 38, 42-46, 61-67, 69, 70, 72, 73, 75-78, 81, 82, 85-87, 89-91, 100-102</td>
</tr>
<tr>
<td>myelinated</td>
<td>2-5, 8, 11-19, 21-27, 30, 31, 34, 41, 42, 44, 46, 49-51, 57, 62, 64, 71-74, 77, 78, 81-85, 90, 101</td>
</tr>
<tr>
<td>N1</td>
<td>69</td>
</tr>
<tr>
<td>N2</td>
<td>69</td>
</tr>
<tr>
<td>neural coding</td>
<td>69</td>
</tr>
<tr>
<td>neurite</td>
<td>30, 49, 85, 92, 93</td>
</tr>
<tr>
<td>neurites</td>
<td>21, 46, 72, 90</td>
</tr>
<tr>
<td>neurotransmitter</td>
<td>11, 88, 95</td>
</tr>
<tr>
<td>myelin</td>
<td>2, 3, 13-15, 17, 22, 26, 30, 32, 43, 69, 71, 73-77, 83, 90</td>
</tr>
<tr>
<td>myelinated</td>
<td>2-5, 8, 11-19, 21-27, 30, 31, 34, 41, 42, 44, 46, 49-51, 57, 62, 64, 71-74, 77, 78, 81-85, 90, 101</td>
</tr>
<tr>
<td>signal transmission</td>
<td>9-107</td>
</tr>
<tr>
<td>signal transmission</td>
<td>100-107</td>
</tr>
<tr>
<td>MRI</td>
<td>85</td>
</tr>
<tr>
<td>modulator</td>
<td>56</td>
</tr>
<tr>
<td>monopulse</td>
<td>5, 49, 51, 54-56, 62, 89</td>
</tr>
<tr>
<td>monopulse oscillator</td>
<td>56</td>
</tr>
<tr>
<td>IRIG</td>
<td>47, 58</td>
</tr>
<tr>
<td>Kirchoff's Laws</td>
<td>43, 66</td>
</tr>
<tr>
<td>lateral geniculate</td>
<td>49</td>
</tr>
<tr>
<td>liquid-crystalline</td>
<td>49</td>
</tr>
<tr>
<td>local circuit</td>
<td>19, 101</td>
</tr>
<tr>
<td>locomotion</td>
<td>55, 101</td>
</tr>
<tr>
<td>metabotropic</td>
<td>94</td>
</tr>
<tr>
<td>mGluR6</td>
<td>8, 57, 58, 97</td>
</tr>
<tr>
<td>modulation</td>
<td>94</td>
</tr>
<tr>
<td>MRI</td>
<td>85</td>
</tr>
<tr>
<td>myelin</td>
<td>2, 3, 13-15, 17, 22, 26, 30, 32, 43, 69, 71, 73-77, 83, 90</td>
</tr>
<tr>
<td>myelinated</td>
<td>2-5, 8, 11-19, 21-27, 30, 31, 34, 41, 42, 44, 46, 49-51, 57, 62, 64, 71-74, 77, 78, 81-85, 90, 101</td>
</tr>
<tr>
<td>N1</td>
<td>69</td>
</tr>
<tr>
<td>N2</td>
<td>69</td>
</tr>
<tr>
<td>neural coding</td>
<td>69</td>
</tr>
<tr>
<td>neurite</td>
<td>30, 49, 85, 92, 93</td>
</tr>
<tr>
<td>neurites</td>
<td>21, 46, 72, 90</td>
</tr>
<tr>
<td>neurotransmitter</td>
<td>11, 88, 95</td>
</tr>
<tr>
<td>neuro-facilitator</td>
<td>95</td>
</tr>
<tr>
<td>half-section</td>
<td>3, 20, 38, 39, 73</td>
</tr>
<tr>
<td>Heimholtz Effect</td>
<td>11</td>
</tr>
<tr>
<td>hemi-node</td>
<td>46, 49</td>
</tr>
<tr>
<td>Hermann cable</td>
<td>15-17, 19, 24, 25</td>
</tr>
<tr>
<td>hole</td>
<td>30, 31, 72</td>
</tr>
<tr>
<td>hormone</td>
<td>13</td>
</tr>
<tr>
<td>hydronium</td>
<td>74, 92</td>
</tr>
<tr>
<td>hydronium liquid crystal</td>
<td>92</td>
</tr>
<tr>
<td>impedance measurements</td>
<td>39</td>
</tr>
<tr>
<td>inhomogeneous</td>
<td>71</td>
</tr>
<tr>
<td>internal feedback</td>
<td>54, 55, 96</td>
</tr>
<tr>
<td>intemeuron</td>
<td>81</td>
</tr>
<tr>
<td>intemode</td>
<td>4, 73, 75-77, 82, 85, 86</td>
</tr>
<tr>
<td>inverting</td>
<td>49</td>
</tr>
<tr>
<td>IRIG</td>
<td>47, 58</td>
</tr>
<tr>
<td>Kirchoff's Laws</td>
<td>43, 66</td>
</tr>
<tr>
<td>lateral geniculate</td>
<td>49</td>
</tr>
<tr>
<td>liquid-crystalline</td>
<td>49</td>
</tr>
<tr>
<td>local circuit</td>
<td>19, 101</td>
</tr>
<tr>
<td>locomotion</td>
<td>55, 101</td>
</tr>
<tr>
<td>metabotropic</td>
<td>94</td>
</tr>
<tr>
<td>mGluR6</td>
<td>8, 57, 58, 97</td>
</tr>
<tr>
<td>modulation</td>
<td>94</td>
</tr>
<tr>
<td>monopulse</td>
<td>5, 49, 51, 54-56, 62, 89</td>
</tr>
<tr>
<td>monopulse oscillator</td>
<td>56</td>
</tr>
<tr>
<td>MRI</td>
<td>85</td>
</tr>
<tr>
<td>myelin</td>
<td>2, 3, 13-15, 17, 22, 26, 30, 32, 43, 69, 71, 73-77, 83, 90</td>
</tr>
<tr>
<td>myelinated</td>
<td>2-5, 8, 11-19, 21-27, 30, 31, 34, 41, 42, 44, 46, 49-51, 57, 62, 64, 71-74, 77, 78, 81-85, 90, 101</td>
</tr>
<tr>
<td>N1</td>
<td>69</td>
</tr>
<tr>
<td>N2</td>
<td>69</td>
</tr>
<tr>
<td>neural coding</td>
<td>69</td>
</tr>
<tr>
<td>neurite</td>
<td>30, 49, 85, 92, 93</td>
</tr>
<tr>
<td>neurites</td>
<td>21, 46, 72, 90</td>
</tr>
<tr>
<td>neurotransmitter</td>
<td>11, 88, 95</td>
</tr>
<tr>
<td>neuro-facilitator</td>
<td>95</td>
</tr>
<tr>
<td>Node of Ranvier</td>
<td>2-4, 18, 22, 26-29, 38, 42-46, 61-67, 69, 70, 72, 73, 75-78, 81, 82, 85-87, 89-91, 100-102</td>
</tr>
<tr>
<td>noise</td>
<td>57, 61</td>
</tr>
<tr>
<td>pain</td>
<td>26, 83, 84</td>
</tr>
<tr>
<td>parametric</td>
<td>32, 51, 53-55, 58, 61, 84</td>
</tr>
<tr>
<td>parvocellular</td>
<td>49, 58</td>
</tr>
<tr>
<td>phase velocity</td>
<td>18, 19, 35, 36, 38, 41, 42, 68, 72, 78, 81-83</td>
</tr>
<tr>
<td>place code</td>
<td>47, 48, 57-59, 61</td>
</tr>
<tr>
<td>pnp</td>
<td>5, 49</td>
</tr>
<tr>
<td>poda</td>
<td>55, 89</td>
</tr>
<tr>
<td>podites</td>
<td>11</td>
</tr>
<tr>
<td>poditic</td>
<td>5, 8, 49-51, 55, 62, 91-93, 96</td>
</tr>
<tr>
<td>probabilistic</td>
<td>47, 56</td>
</tr>
<tr>
<td>propagation velocity</td>
<td>16, 21, 22, 24, 25, 27-29, 31, 37, 41, 45, 71, 82, 86</td>
</tr>
<tr>
<td>protocol</td>
<td>57, 93</td>
</tr>
<tr>
<td>pyramid cell</td>
<td>2, 46, 100</td>
</tr>
<tr>
<td>quantum-mechanical</td>
<td>12</td>
</tr>
<tr>
<td>rate code</td>
<td>47, 58</td>
</tr>
<tr>
<td>receptive layers</td>
<td>46</td>
</tr>
<tr>
<td>rectifier</td>
<td>46</td>
</tr>
<tr>
<td>refractory period</td>
<td>52, 55, 67</td>
</tr>
<tr>
<td>resonance</td>
<td>84</td>
</tr>
<tr>
<td>S spot</td>
<td>55</td>
</tr>
</tbody>
</table>