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PREFACE

“Neurophysiology has at times been described as data-rich and theory-poor. The neurophysiology of hearing
however may almost be described as speculation-rich and data-poor. There is a serious lack of systematic
data at virtually every level of the auditory system.”

N. Y-S. Kiang, 1965

The above quolation from Kiang, in spite of his efforts and those of others, has changed little in the last fifty years.
No subsequent work could be found in the literature satisfying Kiang’s call for action. In 1998, Poon & Brugge
confirmed this situation. “The full power of combining experiment and theory has yet to be unleashed on studies of
the neural mechanism in the brain involved in acoustic information processing.” The goal of this work is to provide
the theory that explains the previously collected data and guides the next data collection cycle; this is the essence
of the scientific method.

This book is complementary to the author's 2004 work, Biological Vision: A 21st Century Tutorial. It was planned

to write a work on the broader subject of the neural system. However, it was quickly found that detailed knowledge

of the other sensory modalities was as sparse as it had been for vision. It was not possible to write a book on the

neural system that was both detailed and comprehensive. This work provides a new and both comprehensive and

contiguous description of the auditory modality. A new paradigm is introduced. This paradigm introduces several

new propositions incompatible with previous works.

. Itintroduces the actual mechanism of frequency analysis used in biological hearing for the first time.

. It describes in detail the circuits of the sensory neurons that create the generator waveforms at their axons.

. It also describes the method of percept creation used in both hearing and vision for the first time.

. It also provides the first explanation of the mechanism resulting in the poorly named “critical bands” in hearing,
and it ties this mechanism to the attention mechanism.

. It defines the method of encoding used at the lowest level within the neural system and shows that the commonly
used PST histogram is inappropriate while defining a new histogram format.

8. It shows a literal interpretation of the clinical term recruitment is inappropriate.

[$,] PWON =

As noted by Kuhn when he expanded the concept of paradigm, “rival paradigms are incommensurable—that is, it
is not possible to understand one paradigm through the conceptual framework and terminology of another rival
paradigm.” A feature of a new paradigm is its frequent ability to explain paradoxes encountered inthe old paradigm.
Both the fundamental frequency paradox and the tritone paradox associated with the old paradigm are resolved
under the new paradigm. The unresolved role of the outer hair cells within the cochlear partition under the old
paradigm is clearly defined under the new paradigm, as is the operation of the cochlear partition itself. The new
paradigm does not require, or support, a mechanical amplifier between the basilar membrane and the cilia.

As noted in Chapter 1, the material prepared to describe the contiguous hearing modality greatly exceeds the
available space in a one volume book. As a result, this volume may appear too cryptic or overly concise in some
areas. To alleviate this problem, a more verbose version of this work (that may expand into a second volume) was
placed on the Internet in 2007. Where appropriate, the reader may wish to consider this volume a guide to that
resource.

The overall effort was planned and written by one author to communicate a cohesive end-to-end description of the
auditory system, primarily in humans, that is as complete and detailed as possible. Of necessity, the level is
designed for advanced students and researchers in neurobiology, residents, and other professionals seeking current
information on the biology of hearing. It originated during the preparation of a neurological text of larger scope when
it became apparent that the operation of large portions of the auditory system were not adequately understood within
the hearing community. It became apparent that much of the knowledge available from vision research could be
applied to the auditory system.

This book could not have been written by an insider of the Hearing research community. It would have required
excruciating and wrenching changes from what | would have been taught, and what my associates would tolerate
in the realm of ideas. The ability of an “uninitiated” to review the available data and derive a comprehensive
functional model appears to offer significant value in this situation. Uninitiated may not be an appropriate term since
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the author has previously performed a similar analysis on the visual system and published the most comprehensive
book available on its operation. Much of that material is available on the Internet and is accessed by thousands from
around the world every day.

The above methodology has provided extensive insights that were not available to the exploratory investigators at
the time of their experiments. These will be presented below. The hearing system shares many of the architectural
features of the vision system. Reinterpretation of the available data within this realization offers considerable
verification of the proposed model, along with improved understanding of the operation of the auditory system.

Eddins & Green have discussed the difficulty of developing a mechanistic theory of how the auditory system
functions’. They note the complexity of the system has made this a difficult task. The problem has been
exacerbated by the wide range among experimental values for a given parameter found in the literature. They noted
de Boer rejected all theories related to frequency analysis proposed prior to 1985 as ad hoc based on a limited data
set. He proposed the community seek to replace the myriad of ad hoc models with a single, internally consistent
“super-model.” This work will introduce a number of improvements in the data set since then as well as a paradigm
shift in the fundamental assumptions related to transduction. It also introduces the Activa, the active electrolytic
semiconductor device of the neural system. The discovery of the Activa provides a common explanation to many
previously unresolved issues in all areas of the neural system. As a result, this work offers a much more
compéehensive and internally consistent, although still incomplete, “super-model” for Professor de Boer's
consideration.

In reading the preface to “Foundations of Modem Auditory Theory” by Jerry Tobias (1972), | was intrigued by some
of his thoughts. He notes, “For a long time now, I've been looking for a book that would tell me more about ears than
| wanted to know. It doesn’t exist. This book isn't it either, although it was devised for the purpose of filling more
gaps than any of the others do.” Following his publishing adventure, he noted, “Anyone who attempts to compile
a treatise of the magnitude of this one has to be an eccentric—if not when he starts, then certainly by the time he’s
done.” Let me add that the likelihood of becoming an eccentric is compounded when one chooses to write all of the
text, as opposedto only editing the work of contributors as Tobias did. After encountering the same problem in vision
and solving it, | also wanted to find a desk reference that explained how hearing worked.

The task appeared lo revolve around the penchant of biologists and even biophysicists to rely upon the linear
assumption. Belgum & Copenhagen highlighted the awkwardness of the linear assumptionin 1988°. They described
the logarithmic transfer function of the synapse graphically and in considerable detail, including using the expression
“an e-fold change in the release rate of fransmitter from the rod be obtained with a 2 mV change in rod potential.”
They then transition to a linear two-lerminal model for the synaptic mechanism in their figure 7.

The Electrolytic Theory of the Neuron presented in this work is not a variant of the passive linear concept of the
synapse developed in earlier works. The Electrolytic Theory was developed from fundamental concepts, involves
an active element and is inherently nonlinear (primarily exponential based on the mechanisms involved). It applies
to all elements of the neural system, not just the synapse.

The original debate over the chemical versus electrical character of the synapse hinged on the unidirectional
character of the signal flow in the face of a bilateral (linear) description of the electrical putative network. Patch
clamp data is now available showing the synapse exhibits a diode characteristic that is electrically reversible. Such
performance is compatible with the Electrolytic Theory of the Neuron but is in conflict with the current putative
chemical synapse which is physically asymmetric and not reversible.

My middle name is Thomas. | am the quintessential “doubting Thomas” of folklore. | must be able to answer the
four basic questions about anything | encounter and become involved with; what, where, how and why. This talent,
or eccentricity, has served me well. It has provided answers to many previously unknown facts during my career.
This has been particularly true about the visual system, documented in my recent book, and it has now answered
many previously unanswered questions about the auditory system, documented in this work.

Attempting to proceed without a sophisticated model (as opposed to a simple conceptual model) is a direct violation
of ‘the Scientific Method.” The disparate data in the literature can only be rationalized (or discarded as erroneous)
based on an adequate (although possibly still incomplete) model. Lacking such a model, the data in the literature
is necessarily “out of context.” At the current time, the field of hearing research must be considered one of
exploratory research, rather than applied research. The primary goal of this work is to provide the necessary model,
place the data reviewed in its proper context, and provide visibility into the appropriate future applied research.

This book is designed to be readable by the many, with the occasional reliance upon the Glossary provided in
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Appendix A. However, it is designed for the upper university through postgraduate level. The initial chapter will
present some material in abbreviated form, with subsequent detail to follow. As a result, those without at least an
introductory course in the morphology and physiology of animals may find it difficult to follow. On the other hand,
it will infroduce many engineering and mathematical concepts that are foreign to both previous and current biology
curriculums. As a result, some material may appear new to even those well prepared in the biological sciences.
Chapter 2 is presented with the particular purpose of acquainting the reader with the Electrolytic Theoty of the
Neuron. Additional mathematical concepts will be introduced periodically as the need arises throughout the work.
The mathematical field of conformational transforms has been found to play a crucial role in the ability of the visual
system of humans lo exiract features from complex two-dimensional scenes imaged on the fovea. Among other
features, a conformal transformation used in vision transforms circles in object space into straight lines in the
correlation space of the occipital lobe. This work will show a similar Riemann transformation is used in hearing.

The paradigm shift embodied in the Theory and models presented in this work may be difficult for many teaching
academics lo accept. They are frequently wedded to the material they are currently teaching. To change their
position requires wrenching changes related to both their thinking and the syllabi they have worked from for years.
Unfortunately, their students do not suffer these constraints. The students have proven willing to adopt the material
via their exposure to it on the internet.

This work introduces a number of scientific disciplines to the study of hearing that did not exist during the first half
of the 20th Century. These disciplines lead to an entirely different concept of the auditory modality than presented
in the literature up to this very day. The method of energy propagation within the cochlea depends on the
development of the recent field of liquid crystals (beginning in circa 196(%, combined with the unique mode of energy
propagation associated with the Rayleigh (surface acoustic) wave. The method of frequency selection employed
in the cochlea was only recognized theoretically by Marcatili in 1969. The electrolytic nature of signal transmission
within the neural system was first published by this author in 2004. Any study of hearing (whether theoretical or
grr;pirical) that does not incorporate the mechanisms associated with these technologies is obsolete, virtually by
efinition.

An earlier alternate electronic theory of the neuron (focused on the synapse) was suppressed by the oligarch peers
of neurology during the 1950's and little material based on an electrolytic approach has been published since. This
was, and remains, an unfortunate action by the neurological community. It has retarded the advancement of science
concerning the sensory modalities significantly. The Electrolytic Theory of the Neuron (addressing the complete
neurological system) is based on concepts concerning a state of matter unknown to the generation active al
mid-century. The Electrolytic Theory of the Neuron is based on the liquid-crystalline state of matter. The
liquid-crystalline state is becoming known as the fifth state of matter, following the solid, liquid, gaseous and plasma
states. Currently, the success of the Electrolytic Theory of the Neuron is so advanced, it answers questions that
cannot even be formulated based on the chemical theory. This fact will become overwhelmingly clear in the course
of interpreting this work and its companion works on neurology and biological vision.

The Electrolytic Theory easily handles the following questions. What is the main purpose of Reissners Membrane
within the cochlear partition (Chapter 4)? Why is there an electrical potential difference of 80 millivolts between the
two sides of the membrane (Chapler 5)?

It also answers another unique question that has not been answered by any other theory. “What mechanism can
provide 450 dB/octave altenuation on the high frequency side of a sensory neuron response than any
resonance-based circuit?” This attenuation far exceeds that achievable in any resonant circuit (Chapter 4). The
unique mathematics associated with this mechanism provides strong support for the theory of frequency separation
proposed in this work.

The dispersive theory of the cochlea presented here has also significantly advanced understanding at the expense
of the various resonance and otherraveling wave theories of the literature. It answers many questions not answered
by, or beyond the scope of, these other theories. A good example is “why is the frequency response of the dispersive
mechanism asymmetrical when measured at the auditory nerve?”

The reader is also asked to examine his interpretation of how the Scientific Method should build on the foundation
provided by earlier investigators. Should the early work be considered a spotlight defining a narrow path forward
through the darkness, or as a floodlight providing the ability to interpret the environment immediately ahead in order
to gain a broader understanding? The first approach necessarily prevents examination of branches in the road and
the approach of parallel investigations from outside the narrow path that may lead to the merging of ideas, the very
essence of progress in science.
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This work probably contains errors and inconsistencies. It certainly contains unfinished tracts. The author has not
had the advantage of students to proofread every page. While it has been circulated among qualified readers, any

errors are the responsibility of the author and will be corrected as soon as possible via the author's website and in
future editions.
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